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Abstract 9 

 10 

The lipid nanoparticle (LNP) platform for delivering modified messenger RNA (modRNA) represents 11 
a transformative yet inherently complex and unpredictable technology. This narrative review synthe-12 
sizes multidisciplinary evidence to explore the physicochemical basis, biological interactions, pharmaco-13 
dynamic uncertainties, and safety challenges associated with LNPs and LNP-modRNA interactions. We 14 
describe how LNP self-assembly gives rise to variable structures with inconsistent modRNA payloads, 15 
as well as dynamic protein corona formation and aggregation phenomena that complicate the reliable 16 
characterization of these systems. After injection, LNPs undergo rapid biotransformation, including 17 
PEG-lipid shedding, biodistribution, and cellular uptake, which current analytical techniques cannot 18 
fully capture. 19 
 20 
Importantly, endosomal escape, which leads to the disruption of the endosome and the release of the 21 
payload, occurs within a narrow time window, is often inefficient, and results in inconsistent delivery. 22 
In addition, lipid metabolites, cell membrane modulation, and adduct formation pose poorly character-23 
ized risks. 24 

 25 

Keywords: lipid nanoparticles, mRNA vaccines, protein corona, endosomal escape, unpredictability, 26 
drug interactions, safety 27 
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29 
Figure 1 30 

Conceptual overview of the unpredictable LNP platform. Four key challenges are highlighted. 1. LNP 31 
heterogeneity (variable modRNA content, aggregates, impurities) 2. Protein corona dynamics (patient-32 
specific, uptake, biological identity) 3. Lipid persistence and toxicology (PEG lipid immunogenicity, 33 
modRNA-lipid adducts) and 4. Endosomal escape bottleneck (5-15min window, low efficacy, 34 
membrane disruption) Original work using Canva by S. Natsheh. Icons made by Pixel 35 
perfect from www.flaticon.com 36 

 37 

1 Physicochemical Foundations of the LNPs 38 

 39 

1.1 Introduction 40 

 41 

The physicochemical properties of lipid nanoparticles (LNPs), including their size, shape, surface reac-42 

tivity, and lipid composition, are crucial for their role in delivering modRNA to cells. These in vitro 43 

properties govern LNP stability, encapsulation efficiency, and the ability to penetrate the cell membrane 44 

and transport the modRNA into the cytosol. The physicochemical properties of LNPs profoundly af-45 

fect the lipid chemistry of the cell membrane, which varies between different cells and cell types. This is 46 

important since the membrane is inherently connected to the intracellular signal transduction 47 

  48 
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 network, which is initiated and regulated by endocytic processes and receptor conformational changes, 49 

many of which depend on the physicochemical properties of the LNPs. This section thoroughly inves-50 

tigates the LNP composition, structure, and nanoparticle characteristics, establishing a foundation for 51 

understanding their behavior in vivo. 52 

 53 

LNPs are by no means new.(Cullis & Felgner, 2024; Tenchov et al., 2021) Research into lipid carrier 54 

systems with a wide variety of formulations has been ongoing for over 60 years. Liposomes are an ear-55 

lier type of LNPs, consisting of one or multiple lipid bilayers with an aqueous core. They are commonly 56 

used in drug delivery because hydrophilic drugs can be enclosed within the aqueous interior, while hy-57 

drophobic drugs are trapped within the hydrocarbon chains of the lipid bilayer. Liposomes cannot effi-58 

ciently carry nucleic acids, such as mRNA, due to the size, polyanionic nature, and hydrophilicity of the 59 

mRNA, which motivated the development of ionizable lipid-based LNPs. Additionally, nucleic acids 60 

are quickly degraded by endogenous nucleases in bodily fluids.(Kloczewiak et al., 2022) To address 61 

these issues, LNPs incorporating ionizable lipids have been developed as delivery vehicles for small in-62 

terfering RNA (siRNA) and mRNA, thereby protecting fragile cargo from degradation in vivo and fa-63 

cilitating cellular delivery. 64 

 65 

Despite their widespread clinical application in SARS-CoV-2 vaccination, the complex multicomponent 66 

nature of LNP systems leads to heterogeneity and unpredictability at multiple levels of biological inter-67 

action. Regulatory assessments have traditionally categorized LNPs as inert excipients, but accumulat-68 

ing evidence points to adjuvant-like properties, complement activation, immunomodulation, and poten-69 

tial drug–vaccine interactions caused by cytokine-mediated suppression of cytochrome P450 enzymes. 70 

Taken together, these findings suggest that LNPs should be regarded as active pharmacological entities 71 

rather than passive carriers, whose systemic and long-term effects remain incompletely understood. 72 

 73 

While prior reviews have explored the properties of LNPs(Tenchov et al., 2021) or safety as-74 

pects,(Bitounis et al., 2024) the present work represents a first attempt to integrate the unpredictable 75 

and partially stochastic nature of modRNA–LNP systems across their pharmacological dimensions. 76 
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We argue that this non-linear behavior introduces uncertainty into therapeutic application and chal-78 

lenges precision and predictability. Accordingly, we emphasize the need for enhanced regulatory over-79 

sight, thorough mechanistic studies, clinical pharmacology assessments, and the application of ad-80 

vanced analytical techniques to better characterize and evaluate this novel platform. 81 

 82 
1.2 Composition 83 

 84 

The currently approved LNP formulations for the COVID-19 vaccines contain four lipids: (1) an 85 

ionizable cationic lipid, (2) a helper lipid DSPC (1,2-distearoyl-sn-glycero-3-phosphocholine), (3) 86 

cholesterol, and (4) a polyethylene glycol (PEG)-lipid conjugate.(Chaudhary et al., 2024) Each lipid 87 

component of the nanoparticle and its molar ratio are critical to the activity and disposition of the 88 

modRNA. Similarly, the first approved LNP-RNA product, patisiran (Onpattro), contains short 89 

interfering RNA (siRNA) in an LNP formulation designed to deliver siRNA to the liver and silence the 90 

expression of transthyretin, a protein that causes transthyretin amyloidosis (ATTR). 91 

 92 

Developing and scaling up Onpattro® paved the way for LNP-modRNA vaccines, which are the 93 

fastest vaccines ever produced.(Hald Albertsen et al., 2022) 94 

 95 

The ionizable lipid is crucial for delivering nucleic acids across cell membranes. Composed of a tertiary 96 

amine head, a linker, and a hydrophobic tail, it undergoes protonation under acidic conditions. This 97 

allows it to bind to negatively charged modRNAs, specifically via the tertiary amine head, owing to the 98 

unique properties and pH-dependent surface charge of ionizable lipids (Han et al., 2021). The design of 99 

the ionizable lipid, such as tail length(Hashiba, Taguchi, Sakamoto, Otsu, Maeda, Suzuki, et al., 2024), 100 

saturation, and branched tails, (Petersen et al., 2024) influences the efficacy and toxicity of the LNPs. 101 

The helper phospholipid (DSPC) enhances LNP bilayer stability, thereby preventing leakage of nucleic 102 

acid cargo. It provides the structural foundation for membrane fusion, which is necessary for cellular 103 

uptake. Cholesterol is crucial for maintaining the overall shape, fluidity, and permeability of the bilayer 104 

membrane, as well as supporting other phospholipids for effective encapsulation and protection of the  105 
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modRNA cargo,(Wang et al., 2024). Cholesterol accounts for about 45% of the LNP content and can 107 

exist in a crystalline-like state within the LNP.(Anindita et al., 2024) 108 

 109 

The PEG lipid conjugate serves primarily to decrease LNP size, shield the LNP from rapid clearance 110 

by the reticuloendothelial system (RES), stabilize LNPs via steric repulsion, and prevent protein 111 

adsorption due to the hydrophilic chains extending from the surface.(Hald Albertsen et al., 2022) It 112 

typically only comprises about 1.5% of the LNP content. The immunogenicity of PEG has drawn 113 

attention due to the development of anti-PEG antibodies after repeated exposure.(Song et al., 2025) 114 

 115 

1.3 Structure of the LNPs 116 

 117 

For COVID-19 vaccines, the exact structures of modRNA-LNPs remain unknown due to their self-118 

assembly nature and the properties of the lipids used. These Janus particles, which exhibit two or more 119 

distinct physical properties, remain poorly understood. Small-angle neutron scattering (SANS) reveals 120 

that blebs (separate aqueous-filled compartment within a lipid nanoparticle, distinct from the main lipid 121 

structure) are common, but they do not always indicate the presence of modRNA within them.(Chen et 122 

al., 2025) In fact, identifying modRNA-free LNPs has proved particularly challenging. Studies estimate 123 

that 12-80% of LNPs (most recently 30-35%) may lack any modRNA, depending on the manufacturing 124 

process, the ionizable lipid used, and the analytical method employed.  125 

(Li et al., 2022; Münter et al., 2024; Pavlin et al., 2025; Schober et al., 2024) The modRNA payload is 126 

especially important, particularly regarding the number of strands and the structure of the modRNA, as 127 

the random packaging of modRNA constructs influences LNP behaviour and potency.(Liao et al., 128 

2025) (Renzi et al., 2024) (Di et al., 2022) Therefore, the relationship between the declared dose (µg of 129 

RNA) and the number of RNA-containing particles is not straightforward, and this correlation has yet 130 

to be fully described. 131 

 132 
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Currently, there is no reliable analytical method to accurately characterize either the content (i.e., the 134 

modRNA,(Webb et al., 2025)) or the structure of LNPs(Sanyal et al., 2021), so orthogonal techniques 135 

are necessary.(Parot et al., 2024; Pavlin et al., 2025) Moreover, LNPs with blebs may also exhibit 136 

different immunogenicity, biodistribution, or in vivo properties that have not been adequately 137 

studied.(Simonsen, 2024) Mixing and filling parameters during manufacturing and sample handling of 138 

filled vials by clinicians also impact modRNA payload.(Matthessen et al., 2024) Furthermore, empty 139 

LNPs may reduce the effective dose, increase variability in therapeutic effectiveness since these are the 140 

ones most likely to transfect cells,(Liao et al., 2025) and accumulate in tissues possibly acting as 141 

adjuvants,(Lee et al., 2023) an understudied risk. These recent findings have raised questions about the 142 

formulation and composition of safe and effective LNPs for modRNA therapeutics and makes it 143 

difficult to comply with recommendations for LNP characterization by regulatory authorities. 144 

(EuropeanMedicinesAgency, 2025) Lyophilization (freeze drying) could reduce empty LNPs and 145 

improve stability at room temperature (De & Ko, 2023) and improve mixing, but remains 146 

investigational. 147 

 148 

1.4 The Nanoparticle Nature of LNPs 149 

 150 

Due to their small size, nanoparticles have an extremely high surface area relative to their volume, 151 

resulting in unique chemical, physical, and biological properties not found in bulk materials. These 152 

properties enhance the LNPs’ reactive interactions with the cell membrane, such as immune responses 153 

and cellular uptake.(Yuan et al., 2024) 154 

 155 

Importantly, the biological behaviour of the LNP formulation cannot be inferred merely from the 156 

isolated properties of individual lipids. This is because the physicochemical characteristics of the entire 157 

LNP present in the final formulation, such as size distribution, shape, surface charge or zeta potential, 158 

agglomeration state, and lipid packing,(Abbasi et al., 2023) arise from interactions among all the 159 

components. For example, the degree of lipid unsaturation and branching affects not only membrane 160 

fusion capabilities but also biodegradability and systemic persistence.(Yang et al., 2022) Secondly, 161 

variations in size, modRNA payload, encapsulation rate, stability, lipid impurities, and other 162 

physicochemical factors may affect the safety and efficacy of these products, as demonstrated in 163 

preclinical and clinical studies.(Yuan et al., 2024) (see Table 1). 164 

 165 

The LNPs are dynamic and unstable 166 



   

 

   

 

 167 

Most recently, evidence suggests that the physiological stability of RNA-LNPs significantly impacts 168 

their therapeutic efficacy, pharmacokinetics (PK), tissue-targeting ability, and toxicity.(Zhang & Barz, 169 

2025) Instability in blood or plasma can lead to premature degradation of LNPs and the release of 170 

modRNA, potentially altering biodistribution and immune effects or affecting potential inflammation, 171 

depending on the specific formulation.(Eygeris et al., 2022)T he Moderna and Pfizer/BioNTech 172 

vaccines differ in LNP behaviour. The modRNA of the Moderna COVID-19 vaccine persisted longer 173 

in plasma than the ionizable lipid SM-102 itself, suggesting lipid transfer to lipoproteins or extracellular 174 

vesicles (EVs).(Kent et al., 2024; Y. Ren et al., 2025). The implications for cellular function remain 175 

uncertain. Conversely, the ionizable lipid of Pfizer/BioNTech’s vaccine, ALC-0315, showed prolonged 176 

lipid exposure but lower levels of modRNA in plasma.(Y. Ren et al., 2025) This could indicate 177 

instability of the intact LNP in plasma, possibly caused by trace impurities of the ionizable lipid(Liau et 178 

al., 2024) or complete disintegration in plasma(Bitounis et al., 2024) These differences between the 179 

approved vaccines suggest that the specific formulation and manufacturing of the modRNA and lipid 180 

components (Figure 2) are distinct both in composition and biological effects, which may influence 181 

vaccine efficacy and outcomes. A comparison of the publicly available compositions, physicochemical 182 

properties, and key formulation parameters of the currently approved LNP-RNA products is shown in 183 

Table 1. 184 
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Figure 2 https://BioRender.com/ysmgilk186 

 187 

  188 

Figure 2  Schematic Structure 

of mRNA-Lipid Nanoparticle  

Lipid nanoparticles are mainly composed of 

ionizable lipids, cholesterol, phospholipids, 

and polyethylene glycol (PEG)-lipid.  

The ionizable lipids are cationic (positively 

charged) at a low pH (enabling negatively 

charged RNA complexation) and neutral at 

physiological pH (reducing potential toxic ef-

fects), allowing a better delivery of mRNA 

into the cells via endocytosis.  

Phospholipids play a structural role, and cho-

lesterol serves as a stabilizing element in li-

pid nanoparticles. Lipid-anchored PEGs 

dominantly deposit on the lipid nanoparticle 

surface as a barrier to sterically stabilize 

them and reduce nonspecific binding to pro-

teins. Created in BioRender. Seger, F. 

(2025) 
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Category Pfizer/BioNTech (modRNA) Moderna (modRNA) 

Name BNT162b2, Comirnaty mRNA-1273, SpikeVax 

Dose, Route 30 µg/0.3 ml, IM 50 µg/0.5 mL, IM 

Lipid Components ALC-0315 (ionizable lipid, 
Acuitas) 

ALC-0159 (pegylated lipid) 

DSPC (neutral lipid) Cholesterol 

SM-102 (ionizable lipid) 

PEG-DMG (pegylated lipid) 

 DSPC (neutral lipid) Cholesterol 

Molar Ratios (%) 

(ionizable cationic 
lipid: neutral lipid: 
cholesterol: PEGylated 
lipid) 

46.3:9.4:42.7:1.6 50:10:38.5:1.5 

Molar N/P ratios 6 6 

Ionizable Lipid 
Properties 

Apparent pKa=6.09 

least stable 

2 branched chains; moderate 
biodegradability 

2 chiral centres, 3 stereoisomers 
(De et al., 2025) 

Apparent pKa=6.68 

more stable 

1 branched chain; improved 
biodegradability 

No chiral centres 

LNP Particle Size and 
Distribution(Hermosilla 
et al., 2023) 

Widest distribution 

(60-5000nm) 

Wider distribution 

(30-1000nm) 

modRNA payload 
(number of intact 
modRNA constructs 
per LNP) 

Variable (exact payload unclear) Variable (exact payload unclear) 

Encapsulation 
Efficiency (%EE)* 

~50% (Schober et al., 2024) Not reported but likely similar 

Stability Moderate (Y. Ren et al., 2025) High (Y. Ren et al., 2025) 

Buffer Potassium dihydrogen phosphate; 
Disodium hydrogen phosphate 
dihydrate pH 7–8; Tris 
(tromethamine) in October 
2021(USFDA, 2021) 

Tris (tromethamine) 
pH 7–8 



   

 

   

 

TABLE 1:Composition and Physicochemical Properties of LNPs in Approved modRNA Vaccines 190 
(Abstracted from Schoenmaker (Schoenmaker et al., 2021), Zhang, Akinc(Akinc et al., 2019; Zhang et 191 
al., 2023); EMA(EMA/707383/, 2020 Corr.1*1),(EuopeanMedicinesAgency, 2021) ) 192 

*United States Pharmacopeia uses EE(%), defined as the percentage of RNA or therapeutic cargo that is suc-193 
cessfully enclosed within the LNPs relative to the total amount of RNA present in the final sample. Schober et al(Scho-194 
ber et al., 2024) used encapsulation efficiency as the percentage of input RNA encapsulated in the final LNP product 195 
(EEinput%) and found encapsulation rates <50% 196 

 197 

1.5 Analytical Challenges and Knowledge Gaps 198 

 199 

The physicochemical properties often differ from theoretical predictions based on behaviors observed 200 

in non-biological systems. Despite significant progress, reliable techniques to determine physicochemi-201 

cal attributes are not yet fully standardized.(UnitedStatesPharmacopeia, 2024) For instance, particle size 202 

varies.(Hermosilla et al., 2023) Using both expired and unexpired batches of BNT162b2 (Comirnaty®) 203 

and m-1273 (Spikevax®), the authors identified three different populations of LNPs for Comirnaty®: 204 

60–65 nm (90% of the total), 600–700 nm (5–10%), and, in two vials examined, 5000 nm (1.2% and 205 

2.8% by volume). Similar results were observed for SpikeVax®, ranging from 30 nm to 1000 nm. These 206 

large particles likely represent agglomerated LNPs, which are visible particles that may have specific 207 

physical, microbiological, and chemical adverse effects.(Liu & Hutchinson, 2024) Aggregates are higher 208 

in thawed vials and may have in vivo risks (e.g., embolism or inflammation)  209 

 210 

These issues complicate accurate assessment of their in vivo behaviors, as in vitro characterization re-211 

mains unpredictable and variable.(C. Chen et al., 2023) The need for precise characterization of LNPs, 212 

including size, blebs, empty structures, and other parameters, has driven the development of techniques 213 

to identify, observe, and measure significant differences between formulations and batch-to-batch vari-214 

ability of the same LNP-RNA system.(Parot et al., 2024) For instance, Pavlin et al. (2025) recently intro-215 

duced a two-dimensional chromatography method that simultaneously assesses encapsulation efficiency 216 

(~65–70%), nucleic acid integrity, LNP size and  impurities  217 
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enabling detection of empty particles and aggregates in heterogeneous samples simultaneously but re-219 

quires standardization.(Pavlin et al., 2025) The physicochemical and structural complexities, as well as 220 

the lack of a reference standard (a certified material for calibration) for LNP formulations(Simon et al., 221 

2023) raise critical questions about their in vivo behavior. Section 2 will expand on this foundation to 222 

examine how these properties affect biodistribution, uptake, endosomal escape, therapeutic effective-223 

ness, and potential toxicities. 224 

 225 

Section 2 - Biological Interaction and Pharmacodynamic Uncertainties of LNPs 226 

 227 

 228 

2.1 Overview 229 

 230 

The in vivo journey of modRNA-LNPs from injection to protein translation depends on a variety of in-231 

terdependent processes. The physicochemical properties, influenced by LNP manufacturing and chem-232 

istry, impact the in vivo response. This begins with the formation of a protein corona when the LNP in-233 

teracts with biological fluids. Cell uptake, target cell specificity, reliance on the protein corona, routes of 234 

administration, and other factors are not fully captured by current biodistribution analysis methods. Ul-235 

timately, endosomal escape releases the modRNA for translation, and the lipids, modRNA, and newly 236 

formed protein are cleared and degraded through various pathways. LNP-mediated delivery requires 237 

entry into the target cell, traversal of biological barriers and release of modRNA into the cytosol (Fig. 238 

2). 239 

  240 

Key Terms in modRNA-LNP Vaccines: Biodistribution, Transfection, and Gene Expression 
 

1. Biodistribution: physical location of a drug, tracer, or intact LNP within a biological system.  
a. depends on circulation, the protein corona, vascular permeability, and reticular 

endothelial system (RES) uptake 
b. does not indicate cell entry 

2. Transfection: process of delivering nucleic acids, such as modRNA, into eukaryotic cells using 
nonviral methods.  

a. Requires cellular uptake and endosomal release 
3. Gene expression or Protein Production  

a. Translation of mRNA into target protein (ie spike protein) 
b. Depends on intact mRNA, active ribosomes, and protection from degradation 

Critical Note. 

• Biodistribution, transfection and gene expression are time-dependent and distinct processes 

• Many studies conflate LNP biodistribution with transfection or gene expression leading to 
inaccurate assumptions 

• Preclinical trials or regulatory submissions often lack transfection and gene expression data, 
limiting understanding of efficacy and adverse events 



   

 

   

 

Figure 3241 
LNP in vivo Journey from Injection to Site of Action LNPs injected into muscle rapidly drain into 242 
lymph nodes and subsequently circulate in lymph and plasma (the LNP must remain stable in 243 
circulation); 2 Acquires an individualized protein corona; 3 Transfects circulating immune cells; 4 244 
Avoids phagocytosis 5 Leaves circulation via fenestrated epithelium or transcytosis 6. Random 245 
transfection of individual cells and release of modRNA into cytosol 7 Exocytosis via extracellular 246 
vesicles (EVs)/exosomes. Created in BioRender. by Seger, F. (2025) 247 
https://BioRender.com/byxe75h 248 
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2.1 Biodistribution of the LNP-modRNA vaccines 250 

 251 

Accurately determining the biodistribution of  LNPs, the modRNA, and the expressed protein remains 252 

a challenge. This issue affects many studies on modRNA-LNP technologies. Fluorescence-based re-253 

porter assays are primarily used to track protein production or gene expression, but they do not directly 254 

indicate LNP localization or transfection ability. Regulatory guidelines also recommend using quantita-255 

tive whole-body autoradiography (QWBA) to visualize and quantify intact LNP concentrations across 256 

almost all tissues and organs simultaneously, enabling systematic comparisons among tissues.(Vervaeke 257 

et al., 2022) Hybridization techniques, such as fluorescence in situ hybridization (FISH) for localization 258 

and branched DNA (bDNA) amplification for quantification, are used to study mRNA distribution 259 

throughout the body. Luciferase mRNA is a useful reporter for examining biodistribution and protein 260 

expression. However, as regulatory authorities note, its short half-life and lack of  modifications mean it 261 

may not accurately reflect the longer and more sustained protein production typical of  modified 262 

mRNAs.(EMEA/H/C/005735/RR, 2020) Therefore, conclusions based solely on luciferase mRNA-263 

LNPs may underestimate the actual performance of  the modRNA product. These points highlight the 264 

complexity of  evaluating the biodistribution of  modRNA-LNP therapies and emphasize the im-265 

portance of  a layered, comprehensive approach.(Vervaeke et al., 2022) 266 

 267 

No biodistribution studies using the actual modRNA from the Pfizer/BioNTech or Moderna vaccine 268 

were included in the regulatory documents. As a result, there was no assessment of transfection effi-269 

ciency or gene expression levels. Further clarification from regulatory authorities and manufacturers is 270 

needed to determine the necessary chemical, pharmacological, and toxicological studies for these lipids 271 

to obtain approval. (Hemmrich & McNeil, 2023) 272 

 273 

Ci et al.(Ci et al., 2023) performed one of  the few LNP-modRNA biodistribution studies, where the 274 

methodology showed strong differentiation of  the sequential process of  LNP activity based on current 275 

technical capabilities. Quantification of  the ionizable lipid and its metabolites was accomplished using  276 
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LC-MS/MS. ModRNA quantification employed bDNA, and detection of  the non-translating Factor IX 278 

(NTFIX), a model protein, was analyzed using LC-MS/MS. This multi-faceted analytical approach, per-279 

formed in mice, allowed for a clear distinction between LNP distribution, modRNA delivery, and 280 

downstream protein production. The authors demonstrated both LNP distribution and subsequent 281 

protein expression across a wide range of  tissues. Protein production was quickly detected in the liver, 282 

ovary, and thymus, followed by the uterus and kidneys. As expected, the liver produced the most pro-283 

tein overall, followed by the ovaries, kidneys, and lungs. Protein production persisted at low levels up to 284 

168 hours in the lungs, heart, liver, gastrointestinal tract, kidneys, and uterus, but not in the ovaries; 285 

however, no further measurements were obtained. Notably, protein expression was observed in the 286 

heart despite little to no corresponding mRNA at later time points, emphasizing the importance of  an-287 

alyzing both mRNA and protein production separately over time to understand the therapeutic effects. 288 

These results may indicate that macrophages or dendritic cells traffic to the heart; however, generaliza-289 

bility to humans is unknown. The ionizable lipid and its metabolites were concentrated in the urinary 290 

and digestive tracts, suggestive of  hepatobiliary and urinary clearance. The ethanolamine portion of the 291 

ionizable lipid, radiolabeled with14C, showed no metabolism in vivo,(Burdette et al., 2023) indicating 292 

tissue persistence. 293 

 294 

Luo et al. (Luo et al., 2025) recently introduced Single Cell Precision Nanocarrier Identification (SCP-295 

Nano), a novel imaging and deep learning pipeline for single-cell resolution mapping fluorescence-la-296 

belled carriers such as LNPs across whole mouse bodies at doses as low as 0.0005 mg/kg, which are 297 

typical for modRNA vaccines and are 100-1000 times lower than conventional imaging methods, such 298 

as QWBA. Using reporter mRNA (e.g. EGFR), the study demonstrated heterogeneous nanocarrier up-299 

take and protein expression both within and across organs, with hotspots in the liver and spleen. This 300 

punctuated pattern indicated that some cells successfully translated the mRNA, while neighboring cells 301 

exhibited uptake without expression. Intramuscular injection of  LNPs with SARS-CoV-2 spike mo-302 

dRNA revealed low-level heart endothelial delivery, confirming possible molecular and proteomic 303 

changes beyond primary targets. These results in rodent models may not directly apply to humans. Still, 304 

this may have important implications for potential off-target effects that standard diagnostic methods, 305 

such as ultrasound or CT scans, might miss. Cellular or molecular changes could contribute to symp-306 

toms or disease risk, but may not be visible until they become extensive enough to be detected by con-307 

ventional tools. 308 
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The route of  administration also influences the biodistribution of  LNP-modRNA therapy. For intra-310 

muscular administration, such as that for the modRNA COVID-19 vaccines, syringe pressure, perfu-311 

sion rate, proximity to blood vessels and lymphatic vessels, local pH, and temperature, among others, 312 

are important considerations. (Naasani, 2022) In contrast, other LNP-nucleic acid therapies, such as the 313 

siRNA product patisiran (Onpattro®), are administered through intravenous infusion, which achieves 314 

liver targeting almost exclusively through ApoE binding and LDL receptor uptake. Subcutaneous and 315 

intranasal routes favour lymph nodes and lungs, respectively.(Mendonça et al., 2023) These differences 316 

demonstrate that the biodistribution of LNPs differs significantly based on the route of administration, 317 

making them distinct from traditional small-molecule therapeutics. 318 

 319 

2.3 Formation and Biological Role of the Protein Corona 320 

 321 

When LNPs encounter biological fluids, they are immediately transformed by their environment. They 322 

acquire a dynamic and heterogeneous coating of biomolecules known as the protein corona. This layer 323 

fundamentally changes how the body perceives and processes the LNPs, influencing biodistribution, 324 

immune recognition, cellular uptake, and ultimately the efficiency of modRNA translation. Therefore, 325 

the protein corona gives the LNPs a “biological identity”.(Akhter et al., 2021) 326 

 327 

The protein corona formation occurs within minutes through van der Waals forces, hydrophobic inter-328 

actions, electrostatic interactions, and other biochemical and biophysical interactions, resulting in an 329 

individual, heterogeneous in vivo LNP pool.(Cedervall et al., 2007)  For the modRNA-LNPs, this pro-330 

cess is accelerated because the PEG-lipids on the surface of the modRNA-LNPs dissociate and ex-331 

change with plasma proteins, a mechanism known as PEG-lipid shedding.(Escalona-Rayo et al., 2024) 332 

It is a dynamic, complex, and unpredictable process that is crucial for biodistribution, transfection, and 333 

cellular responses, since this is what the cell itself “sees.”(Walczyk et al., 2010) 334 
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Figure 4:The Biocorona Created in BioRender. Seger, F. (2025) https://BioRender.com/edw2fru 336 

  337 

Composition and Determinants of 
the Biocorona 

 
Composition 

• Lipoproteins, immunoglobulins, 
albumin, complement, etc 

• Species-specific, impact on animal 
models for toxicity studies 

Influencing Factors 

• Physicochemical properties (size, 
shape PEG-lipid density, shedding 
rate 

• Environmental factors; 
temperature, pH, incubation time, 
biological fluid (plasma, lymph), 
age, gender, comorbidities 

Human biocorona characterization 

• Not fully characterized 

• LNP size and density resemble 
natural serum lipoproteins 

• Voke et al found consistent 
proteins, i.e.ApoE, C-reactive 
protein, alpha-2 macroglobulin, 
vitronectin 

Dynamic Remodelling  

• Biocorona changes as the LNP 
moves through biological fluids, 
hard and soft corona 

• Complicates LNP behaviour 
prediction 

https://biorender.com/edw2fru


   

 

   

 

The biocorona can alter the internal structure of the LNPs. 338 

 339 

The protein corona can potentially mask targeting ligands or alter interactions with cell membranes. 340 

This can reduce the efficacy of targeted delivery by shielding functional moieties or, in some cases, en-341 

hance functionality by presenting a new protein-based signal.(Voke et al., 2025) 342 

 343 

One of the most critical aspects of the protein corona was demonstrated by Sebastiani et al.(Sebastiani 344 

et al., 2021) When ApoE binds to the protein corona of LNPs, the entire biodistribution pattern of the 345 

original formulation is altered by internal structural changes, potentially affecting modRNA 346 

encapsulation, agglomeration and premature RNA release. Accordingly, the entire surface structure 347 

changes, facilitating the opsonization of phagocytes, such as macrophages and dendritic cells. Further 348 

work also emphasized the importance of the protein corona for not only biodistribution but also 349 

transfection efficiency and translation yield. (da Costa Marques et al., 2023; Huang et al., 2023; K. Liu et 350 

al., 2023; Sengottiyan et al., 2023) 351 

 352 

The immunological effects of the biocorona in plasma 353 

 354 

The accelerated blood clearance (ABC) phenomenon, often triggered by repeated administration of 355 

PEGylated LNPs, results from the production of anti-PEG antibodies. These antibodies can quickly 356 

clear subsequent doses of PEGylated LNPs from the bloodstream through accelerated blood clearance, 357 

reducing therapeutic effectiveness but also potentially increasing the risk of adverse reactions due to the 358 

rapid and unpredictable distribution of the nanoparticles.(Wang et al., 2024) PEGylated nanoparticles 359 

are known to interact with circulating complement proteins, activating the complement cascade and 360 

producing opsonins and anaphylatoxins, which are associated with acute infusion reactions in patients, 361 

known as complement activation-related pseudoallergy (CARPA).(Szebeni et al., 2018) Anaphylactic 362 

and allergic reactions observed after modRNA COVID-19 vaccination may partly reflect this phenom-363 

enon.(Bakos et al., 2024) 364 
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Implications and Challenges 366 

 367 

Since processing and administration into a living organism involve many interfering factors, it seems 368 

plausible that the biocorona causes a nonlinear distribution route depending on the formulation of the 369 

LNPs, the biological environment, and the route of administration. Overall, these data challenge the 370 

idea of a uniform LNP formulation and predictable biodistribution. One might assume that if these 371 

factors heavily influence biodistribution, administering the same dose to two subjects is unlikely to 372 

result in similar responses. Recent approaches to addressing the inherent issues with the biocorona of 373 

LNPs have utilized liposomal LNP-modRNA nanoparticles, which exhibit extra-hepatic targeting and 374 

longer circulation lifetimes, likely due to the formation of fewer proteins in the protein corona.(M. H. 375 

Y. Cheng et al., 2025) This represents a return to the original nanosized lipid particles, liposomes. 376 

 377 

2.4 Target Sites and Tissues 378 

 379 

What are the main sites and tissues targeted by the LNPs? The primary target sites for the LNPs 380 

include the liver, spleen, and draining lymph nodes, as these organs comprise a significant portion of 381 

the Reticuloendothelial System (RES), a component of the immune system that involves phagocytes, 382 

such as macrophages and monocytes. These cells are primarily located on the vascular wall of the liver 383 

(Kupffer cells), spleen (splenic macrophages), kidneys (mesangial cells), and lungs (lung 384 

macrophages).(Ngo et al., 2022) Given the dynamic nature of the biocorona and the common presence 385 

of ApoE in it, it is not surprising that hepatocytes in the liver are the primary target for the 386 

LNPs.(Hosseini-Kharat M, 2025) Additionally, because the liver functions as a biological filter system, 387 

LNPs that are up to 200 nm in size tend to undergo fenestration unless specifically engineered 388 

otherwise, which helps their uptake into liver sinusoidal endothelial cells (LSECs).(He et al., 2024) Since 389 

LNPs first enter through the sinusoidal lumen, Kupffer cells are also the initial targets for 390 

transfection.(Hosseini-Kharat M, 2025) 391 
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Similarly, LNPs tend to distribute to the spleen due to its sinusoidal endothelium, which facilitates LNP 393 

uptake. Depending on the LNP formulation and composition, macrophages and dendritic cells can be 394 

targeted, which is essential for the efficacy of modRNA-LNP vaccines.(Haghighi et al., 2024) Based on 395 

the proportions, shape, charge, and other factors of the LNP lipid, gene expression or protein 396 

production can sometimes exceed levels in the liver.(Hald Albertsen et al., 2022) 397 

 398 

Draining lymph nodes are a common target for LNPs. The size of their fenestrations (<200nm)  399 

allows the LNPs to migrate through lymphatic channels and be taken up by antigen-presenting cells 400 

(APCs).(Hassett et al., 2024) Various modifications, especially surface engineering of the LNPs and 401 

other adjustments, improve targeting and retention. Depending on their size and other factors, LNPs 402 

can also drain directly into lymph nodes. Additionally, larger particles are transported by APCs (mainly 403 

dendritic cells) to different locations, such as the heart, which has been suggested to explain immune 404 

reactivity and responses.(Milano et al., 2021) 405 

 406 

In addition, other organs may exhibit detectable LNP presence in preclinical studies, sometimes 407 

referred to as “off-target effects,” which are caused by the physicochemical properties of the LNPs and 408 

the resulting protein corona. The heart, lungs, adrenal glands, and ovaries are frequently reported in 409 

studies involving rodents and non-human primates (NHP).(TherapeuticGoodsAdministration, 2021) 410 

 411 

Transcytosis or direct penetration can occur, allowing LNPs to bypass blood-organ barriers. This is 412 

important because LNPs can leave the vasculature and cross the blood-brain barrier (Khare et al., 2023) 413 

or the intestinal barrier.(Neves et al., 2016) Zhang et al. (Zhang et al., 2024) in a comprehensive review 414 

list various target cells, such as epithelial, basal, and endothelial cells, and explain how these are 415 

particularly likely to be targeted. Other notable examples include cardiac and skeletal muscle, bone 416 

marrow-derived dendritic cells and macrophages, as well as various cell types and tissues. (J. Chen et al., 417 

2023; Dey et al., 2021; Han et al., 2021; Khare et al., 2023; Swingle et al., 2023; Younis et al., 2023; Żak 418 

et al., 2023) 419 
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Regulatory Gap 421 

 422 

In official FDA and EMA documents, the “target cells” believed to be transfected by the LNPs are not 423 

specified. Notably, the US FDA mentions transfection(USFDA, 2020) Conversely, the EMA states that 424 

the viral protein antigen is expressed in the desired conformation(EuopeanMedicinesAgency, 2021) It is 425 

unclear whether both agencies refer to the same process or if the EMA distinguishes between 426 

transfection and protein expression, as previously discussed. This lack of clear communication and 427 

precise data presentation regarding the modRNA-LNP target cells and delivery, combined with support 428 

from public health agencies, (CentresforDiseaseControlandPrevention, 2022) has contributed to the 429 

common belief that the vaccine is limited to the deltoid muscle. These misconceptions, have led to a 430 

limited understanding of the vaccine’s potential for broader use and distribution, leaving safety profiling 431 

incomplete. 432 

 433 

2. 5 Cellular Uptake Mechanism  434 

 435 

As we have seen, the adsorption of biomolecules onto the LNP surface establishes a dynamic 436 

biocorona overriding the synthetic nanoparticle design. This identity governs cellular interactions by 437 

dictating which membrane receptors are engaged, leading not only to biodistribution patterns but also 438 

to endocytic pathways and, consequently, the intracellular fate of the encapsulated modRNA. This 439 

membrane uptake into cells is termed endocytosis. The efficiency of uptake is profoundly affected by 440 

the biocorona, particle size, shape, and net surface charge.(Hald Albertsen et al., 2022) 441 

 442 

Transfection occurs when the LNPs are endocytosed and the modRNA subsequently escapes the 443 

endosome into the cytosol (Figure 5). 444 
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446 
Figure 5. Schematic representation of nanoparticle cellular internalization pathways, including 447 
clathrin-mediated, caveolin-mediated, clathrin- and caveolin-independent, phagocytosis, and 448 
macropinocytosis. Adapted from Augustine R, Hasan A, Primavera R, et al. Materials Today Com-449 
munications (2020) 25:101692. https://doi.org/10.1016/j.mtcomm.2020.101692. Licensed under CC 450 
BY 4.0 (https://creativecommons.org/licenses/by/4.0/). 451 

 452 

Mechanisms of Uptake 453 

 454 

There is little focus on how LNPs penetrate the cell membrane, or which receptors and ligands are 455 

most likely to interact with LNPs for uptake into cells or endocytosis. In 2008, Lonez et al (Lonez et al., 456 

2008) stated that it was unclear whether receptor-dependent or receptor-independent “endocytosis-457 

like” uptake of liposomes into cells was involved. A reassessment by the same authors in 2012 (Lonez 458 

et al., 2012) noted that the exact nature of the endocytic vesicles involved in endocytosis or 459 

“endocytosis-like” uptake of LNPs was still “a matter of debate.” Whether a receptor- or receptor-460 

independent “endocytosis-like” process occurs strongly depends on the protein corona and the state of 461 

the cell encountered by the LNP and the local microenvironment(Behzadi et al., 2017) (pH, bradykinin, 462 

prostaglandins, etc). Paunovska et al. (Paunovska et al., 2022) reported that LNPs can bind to 463 

apolipoprotein E and low-density lipoprotein receptors (LDL-R), whereas Chaudhary et al(Chaudhary 464 

et al., 2024)  465 
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reported that Toll-like receptor (TLR)4 and CD1d can be internalized with the endosome. Both 467 

receptor-mediated and receptor-independent cellular uptake(Akhter et al., 2021) likely occur 468 

simultaneously within the same cell. Uptake may also occur under specific conditions without direct 469 

binding to membrane components; instead, nonspecific hydrophobic or electrostatic interactions 470 

ultimately initiate the process. (see Table 2) 471 

 472 

Measuring how cell receptors bind is challenging. 473 

 474 

The current methods used to study the mechanisms by which LNPs interact with the cell membrane 475 

often disrupt the natural protein corona composition, making it challenging to identify which cell 476 

receptors recognize and bind to LNPs accurately. Identification of the corona proteins is not sufficient 477 

because not every protein in the corona can interact with cell receptors, as they may require correct 478 

orientation on the nanoparticle surface. Therefore, identifying which epitopes on the biomolecular 479 

corona are accessible to cell receptors is essential for determining potential interactions. Likewise, not 480 

all exposed proteins can necessarily bind to receptors, especially if there is competition with other 481 

proteins with higher affinity for the same receptors. It is, therefore, important to identify which 482 

proteins genuinely participate in these interactions.(Aliyandi et al., 2020) 483 

 484 

Lipid–membrane interactions can also influence cell membrane receptor activity and thereby contribute 485 

to the uptake of lipid nanoparticles (LNPs). As summarized by Lavington & Watts,(Lavington & Watts, 486 

2020) nanodisc and SMA lipid nanoparticle (SMALP) studies demonstrated that specific lipid compo-487 

nents (such as helper lipids) modulate the surrounding membrane environment without directly binding 488 

to G-protein coupled receptors (GPCR). Such lipid-induced alterations affect GPCR conformation, lig-489 

and binding, and signal transduction, supporting functional receptor interactions. The elements of the 490 

protein corona, uptake pathways and primary tissues affected are reviewed in Table 2. 491 
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Biocorona 

Components 

Main Receptors 
Engaged 

Dominant Uptake 
Pathways 

Cell Types 
Most Affected 

Comments/Im-
pact on transfec-
tion 

Albumin gp60 (albondin), 
SPARC, FcRn(Ji 
et al., 2024) 

Caveolae-Mediated 
Endocytosis(Lonez et 
al., 2012; L. Ren et al., 
2025) 

Trancytosis 

Hepatocytes 

Endothelial cells 

Epithelial cells 

Tumor cells 

Can bypass lyso-
somes, improved cy-
tosol delivery, recy-
cling endosomes 

Preferred mecha-
nism for modRNA-
LNPs 

Apolipopro-
teins (ApoE, 
ApoB, ApoA-
1) 

LDL-R 

LRP-1 

SR-B1 

Clathrin-Mediated 

(Sebastiani et al., 
2021; Zhang et al., 
2024, Borah, 2025 
#1697) 

or Caveolae Mediated 
Endocytosis 

Hepatocytes, 

Spleen, macro-
phages 

 

Tissues with 
LDL-R include 
adrenals, ovaries, 
testes 

Neurons(Martins 
et al., 2024) 

Classic receptor-me-
diated LNP uptake 
route with ApoE 

 

May lead to lysoso-
mal degradation if 
clathrin-mediated 

Vitronectin/ 
Fibronectin 

Integrins (αvβ3, 
α5β1) 

Clathrin or Caveolae-
mediated (lipid rafts) 

(Sousa de Almeida et 
al., 2021),(Lavington 
& Watts, 2020) 

Endothelial cells 

Fibroblasts 

Epithelial cells 

Tumor and 
parenchymal 
cells 

Heart in murine 
models (Luo et 
al., 2025) 

Off-target effects 

Affected by nano-
particle shape; size, 
etc. 

Alpha-2 mac-
roglobulin 

LRP1(Yama-
moto et al., 
2024) 

Primarily clathrin-me-
diated 

Hepatocytes, en-
dothelial cells 

Traps LNPs for ly-
sosomal degrada-
tion(Tomihari et al., 
2023)  

Reduces efficacy 

*C-Reactive 
Protein 

FcγR, C1q Phagocytosis, com-
plement activation 

 

Macrophages, 
neutrophils 

Complement activa-
tion, CARPA 

Reduces transfec-
tion efficiency 



   

 

   

 

*Immuno-
globu-
lins(IgG, 
IgM), Anti-
PEG antibod-
ies 

 

FcγR, FcαR 

CSF2RB (new 
finding)(Baima-
nov et al., 2025) 

 

Phagocytosis 

(Sousa de Almeida et 
al., 2021); (Baimanov 
et al., 2025) 

Also clathrin-medi-
ated 

Uptake by APC 
when LNPs are 
opsonized 

Spleen, macro-
phages 

Leads to lysosomal 
degradation 

Triggers immune re-
sponse (ABC) 

CSF2RB potential 
role for CARPA 

*Complement 
proteins (C3b, 
C4b etc) 

Complement re-
ceptors 

Phagocytosis 

Macropinocytosis 

(Borah et al., 2025; 
Miao et al., 2020; L. 
Ren et al., 2025) 

Macrophages 

Neutrophils 

Dendritic cells 

Strongly degrada-
tive; opsonization 

Direct TLR4/CD14 TLR4 is internalized 
along with the form-
ing endosome (pro-
motes lipid-raft for-
mation), 

(Chaudhary et al., 
2024); (Korzun et al., 
2023); (Paunovska et 
al., 2022) 

Dendritic cells, 
macrophages 

Initiates cell signal-
ling and immune ac-
tivation 

Leads to lysosomal 
degradation 

Receptor recycling 

 

Direct 

 

None 

 

Direct Membrane 
Penetration 

GPCR interactions 
(lipid rafts) 

(Sakurai et al., 2022); 
(Lavington & Watts, 
2020) 

Driven by pH 
and lipid destabi-
lization 

(small size, spe-
cific surface 
chemistry or ex-
ternal physical 
forces (e.g., elec-
troporation)) 

Bypasses endosomal 
uptake 

 

Table 2 Biocorona, Receptors and Mechanisms of Uptake 493 

αvβ3=integrin alpha-v beta-3; α5β1=alpha-5 beta-1; ABC = accelerated blood clearance; APC = anti-494 
gen-presenting cells; ApoE = apolipoprotein E. C1q=complement C1q component; CSF2RB=colony 495 
stimulating factor 2 receptor beta; CR3b=complement receptor 3; FcγR= Fc gamma receptor; 496 
FcαR=Fc alpha receptor; GPCR=G-protein-coupled receptor; LDL-R=low-density lipoprotein recep-497 
tor; LRP-1=low-density lipoprotein receptor protein-1; PEG=polyethylene glycol; SR-B1=scavenger 498 
receptor class B Type 1; TLR4=toll-like receptor 4.  499 

*Opsonins (e.g. CRP, IgGs, complement) act in the vasculature, whereas integrins and others, mediate 500 
uptake at the cell membrane. 501 

 502 

The main challenge isn't whether transfection occurred, but how much happens and how conditions in 503 

systems biology influence this process. According to current knowledge, organ fenestrations and the 504 

pKa value mainly determine biodistribution and cellular uptake. The ζ-potential primarily affects 505 



   

 

   

 

protein corona formation and the likelihood of its formation. (Patel et al., 2021),(Cedervall et al., 2007) 506 

Given the numerous mechanisms, cell receptors, and a wide range of cell types, along with cells at 507 

different stages of maturation and division within the same lineage, it is not surprising that efforts to 508 

systematically target receptor-driven signalling pathways within a highly complex biological system are 509 

inherently problematic. 510 

 511 

Interestingly, Zelkoski et al(Zelkoski et al., 2025) demonstrated in THP-1 cells that ionizable LNPs can 512 

activate both TLR4 signalling pathways, the TIRAP/MyD88-NFκB pathway and the 513 

T2025RAM/TRIF-IRF pathway, albeit with differences in magnitude and kinetics: NF-κB signalling 514 

was rapid and robust, while IRF activation was weaker and delayed. This observation supports the 515 

concept that ionizable LNPs, by altering lipid raft dynamics, can induce overlapping but temporally 516 

shifted TLR4 signaling responses, diverging from the canonical temporal segregation of these 517 

pathways(Kim et al., 2023)(Table 2). 518 

 519 
2.6 Endosomal Escape as Key Bottleneck 520 

 521 

Transfection, as previously discussed, occurs in a receptor-dependent and/or receptor-independent  522 
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manner, indicating a bioactive behaviour that extends beyond the traditional pharmacokinetic 524 

approach. Transfection is completed when the modRNA escapes the endosome. Assessing how LNPs 525 

are metabolized from a traditional pharmacokinetic perspective is challenging because they are not 526 

degraded through organ uptake during cell transfection. Instead, endosomal escape and degradation 527 

define the entire spectrum of pharmacodynamics.(Ait-Oudhia et al., 2014; He et al., 2019) The classic 528 

absorption, distribution, metabolism, and excretion (ADME) pharmacokinetic model does not apply to 529 

liposomal or nanoparticle delivery systems. 530 

 531 

The Endosomal Escape Mechanism is Based on Biophysical and Chemical Processes 532 

 533 

Endosomes consist of a lipid bilayer similar to the cell membrane, which prevents nucleic acid escape 534 

as an evolutionary defense against foreign viral RNA entering the cell. For LNPs carrying modRNA, 535 

successful endosomal escape is essential for therapeutic action. After endocytosis, the endosomes 536 

increase the acid gradient, which protonates the ionizable lipids within the LNPs. For example, ALC-537 

0315 has an apparent pKa value of ~6.09, and SM-102 has a value of ~6.6. This protonation event 538 

triggers the rearrangement of lipid molecules into a lamellar phase within the endosomes, promoting 539 

membrane destabilization and releasing the payload into the cytosol, a process known as the proton-540 

driven osmotic swelling or the proton sponge effect.(Fell et al., 2025) (Chatterjee et al., 2024) As the 541 

pressure rises, the membrane destabilizes and may rupture, releasing its contents into the cytosol. 542 

Endosomal damage, as indicated by galectin recruitment, can occur solely from the presence of 543 

ionizable lipids and does not require cystolic delivery of the RNA molecule. (Johansson et al., 2025) 544 

Lipid geometry facilitates this process. The conical shape of the branched, unsaturated fatty acid chains 545 

promotes negative curvature stress within the membrane, increasing destabilization (Petersen et al., 546 

2024) Computational free energy calculations have shown that both ALC-0315 and SM-102 insert into 547 

the cell membrane favourably,(Ermilova & Swenson, 2023) suggesting that ionizable lipids in the 548 

current LNP-modRNA vaccines embed into the lipid bilayer. Even transient tearing may contribute to 549 

escape. Such tearing has been demonstrated with other nanoparticles.(Er-Rafik et al., 2022). Most 550 

recently, LNPs were found tethered to the endosomal membrane and associated with membrane 551 

destabilization.(Johansson et al., 2025) Finally, Pilkington et al (Pilkington et al., 2021) suggest that 552 

LNPs may perturb lipid raft organization, implying that endosomal escape involves not only 553 

endocytosis but also broader effects on membrane dynamics. Figure 5 shows the typical intracellular 554 

journey of a modRNA-LNP. 555 
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 557 
Figure 6 https://BioRender.com/0921yhb 558 

  559 

Figure 6: Endosomal Escape  

a The modRNA is introduced 

into the early endosome after 

being taken up via clathrin-me-

diated endocytosis or LDLR as 

example internalization, which 

is governed by the biocorona 

and lipid raft interactions. b The 

early endosome and protona-

tion of the ionisable lipids. c 

The disruption of the early en-

dosome and the release of mo-

dRNA, impurities, and mo-

dRNA-lipid adducts. d Mean-

while, a portion of engulfed 

LNPs are recycled back into the 

extracellular space as EVs or ex-

osomes. e Another fraction pro-

gresses into late endosomes and 

eventually into lysosomes, 

where they are degraded. f En-

dosomal maturation from early 

to late stages determines the 

fate of the cargo: either delivery 

to the lysosome (e) or secretion 

via exosomes, unless the endo-

some is disrupted (f). Created 

in BioRender. Seger, F. 

(2025)  

https://biorender.com/0921yhb


   

 

   

 

Endosomal Escape is Inefficient 560 

 561 

Only within a narrow window of opportunity do conditions allow LNPs to escape through endosomal 562 

fusion during the endosomal maturation process.(Chatterjee et al., 2024) (Müller et al., 2024) (Hald 563 

Albertsen et al., 2022)  564 

 565 

This window is brief, lasting about 5-15 minutes(Schlich et al., 2021) when conditions in the endosome 566 

enable the LNPs to fuse with the endosomal membrane and deliver their cargo into the cytosol. 567 

Beyond this period, escape efficiency drops significantly. 568 

 569 

This process is highly inefficient, with only about 1-15% of all internalized LNPs resulting in the 570 

production of the target protein.(Sabnis et al., 2018) (Aliakbarinodehi et al., 2024; Chatterjee et al., 571 

2024),(Müller et al., 2024) LNPs that do not escape the endosome at this stage are degraded or 572 

exocytosed.(Maugeri et al., 2019) Degradation through lysosomal fusion enriches the endosome with 573 

degradative contents and enzymes, moving endosomes toward the plasma membrane and enabling 574 

fusion for exocytosis. Most LNPs follow these pathways and fail to deliver mRNA to the cytosol, since 575 

endosomal escape is the main “bottleneck” of mRNA therapeutics.(Chatterjee et al., 2024). Over the 576 

past four decades, numerous methods have been attempted to improve delivery. However, significant 577 

improvements in endosomal escape often come at the cost of increased cytotoxicity, such as 578 

endosomal bursting and release of entire contents into the cytosol.(Dowdy et al., 2022) 579 

 580 

Failure to Escape the Endosomes Results in Cellular Stress 581 

 582 

After endocytosis, if the modRNA is not released into the cytoplasm, the endosomes mature into late 583 

endosomes and then fuse with lysosomes.(Chatterjee et al., 2024) Lysosomes contain various enzymes 584 

such as lipases, proteases, nucleases, and glycosidases that dismantle both the modRNA and lipids. An  585 
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accumulation of undegraded materials from the LNPs can trigger cellular stress, oxidative stress, and 587 

potential inflammatory signalling. This accumulation has been compared to aspects of lysosomal 588 

storage disorders,(Paramasivam et al., 2021)though a direct link to human disease has not been 589 

established. 590 

 591 

Lysosomal retention blocks expected degradation and recycling processes in the cell, including 592 

receptor recycling such as LDL-R. This can create a cellular “traffic jam” that impairs the uptake of 593 

new ligands and receptors.(Y. Cheng et al., 2025) Although the lipids comprising the LNPs are 594 

considered biodegradable, high local concentrations can impair lysosomal function, slow degradation, 595 

and prolong the retention of the disassembled lipids.(Sahay et al., 2013) Consequently, a blockade or 596 

arrest of normal endosomal maturation and acidification not only reduces therapeutic efficacy but can 597 

also lead to toxicological effects.(Paramasivam et al., 2021) 598 

 599 

LNPs May be Expelled Intact or Partially Degraded in Exosomes 600 

 601 

Not all LNPs successfully escape the endosomes or are degraded in lysosomes. A significant portion is 602 

recycled back into the extracellular space, repackaged in extracellular vesicles (EVs) or exosomes. This 603 

pathway enables cells to eliminate undigested LNPs or those that fail to escape the 604 

endosomal/lysosomal pathway. Maugeri (Maugeri et al., 2019) showed that LNPs in recycling 605 

endosomes are expelled either intact or partially degraded, which affects transfection efficiency. 606 

Exocytosis serves as both a clearance route and a secondary distribution mechanism; vesicle-mediated 607 

transport may transfer the modRNA or lipid fragments to the surrounding microenvironment in a 608 

paracrine manner.(Sahin et al., 2014)  609 
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These EVs can also transfect cells, influencing pharmacodynamic outcomes and contributing to 611 

variability and off-target effects. In fact, natural exosomes are being engineered for RNA delivery 612 

(Iqbal et al., 2024) (Bost et al., 2021) because they can cross physiological barriers effectively, have 613 

improved biocompatibility, low toxicity, cell-specific tropism, and can evade the mononuclear 614 

phagocytic system. (Wu et al., 2021) This recycling of endosomes, as well as empty LNPs or those with 615 

blebs, may cause cellular stress, oxidative damage, and chronic inflammation,(Y. Cheng et al., 2025) 616 

which could be linked to adverse effects such as injection-site reactions or immune activation. These 617 

factors are not considered in biodistribution studies and may contribute to cumulative toxicity, 618 

especially with repeated doses. Long-term studies are needed to determine if these adverse events are 619 

causally related, as current regulatory focus is on immediate effects and may overlook these delayed 620 

responses.Endosomal escape of siRNA-loaded LNPs, such as those for Onpattro, is minimal, typically 621 

around 1%,(Akinc et al., 2019; Dowdy, 2023) which restricts cytosolic delivery and helps minimize 622 

cytotoxicity. This low efficiency means that only a small subset of internalized siRNA particles reaches 623 

the cytosol. The escape events themselves tend to produce small, transient membrane disruptions that 624 

are readily repaired by the cell.(Bates et al., 2025; Johansson et al., 2025) As a result, siRNA-mediated 625 

delivery elicits slower and weaker cytotoxic effects compared to delivery systems that induce more 626 

extensive endosomal damage. 627 
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  630 

Endosomal Escape Key Barriers and Open Questions 
 
Endosomal escape is the critical bottleneck for modRNA-LNP therapeutics. Only 1-15% of inter-
nalized particles successfully release mRNA into the cytosol 
 
Main Barriers 

- pH gradient. Protonationof ionizable lipids destabilized the endosomal membrane, but the 
window is narrow (5-15 min) 

- Lipid geometry. Branched or conical tails of the ionizable lipid promote curvature stress, 
but also raises toxicity 

- Particle size and number per cell; too few results in low transfection, too many may lead 
to lysosomal stress and degradation 

- Cell type: Hepatocytes and dendritic cells favour endosomal escape, quiescent or special-
ized cells like neurons or fibroblasts are less permissive 

 
Unresolved Questions 

• Is protein production driven by a few highly productive escape events, or many inefficient 
• How do free ionizable lipids behave once released? (pKa shifts, ROS generation, immune 

activation, reactive aldehydes)? 
• What happens to the modRNA immediately after escape (the ‘dark hour of transfection”) 

before translation begins? 
• Do failed events contribute to chronic inflammation or lipid accumulation with repeated 

dosing 
• How much variability is stochastic (intrinsic) vs cell type dependent and thus controllable? 

 
Implication: Escape is both inefficient, unpredictable and context-dependent, leading to high vari-
ability in transfection and protein expression. Strategies to promote endosomal escape often in-
crease cytotoxicity, resulting in the need for a better mechanistic understanding and safer lipid de-
sign 



   

 

   

 

Single cell Analysis: a pharmacokinetic perspective 631 

 632 

The pharmacokinetics of LNP delivery and protein expression are a complex, multi-step stochastic pro-633 

cess involving uptake, endosomal processing, and mRNA escape. Using single-cell analysis, Müller et al. 634 

(Müller et al., 2024) found that cellular uptake was variable and ranged from minutes to hours depend-635 

ing on LNP shape, composition, and cell type. Endosomal escape varied among individual cells and 636 

was inversely related to protein production; faster release and translation of RNA led to increased pro-637 

tein output. A theoretical “area under the curve” (AUC), used to describe overall pharmaceutical pro-638 

tein availability, was found to depend equally on four factors: the number of mRNA molecules deliv-639 

ered, the translation rate, the mRNA lifetime, and the protein lifetime. Moreover, Müller et al. noted 640 

that little is known about the fate of nucleic acids after they escape from the endosome. Before any 641 

measurable action, such as protein expression occurs, there is what Müller calls “the dark hour of trans-642 

fection,” the intracellular biochemical and physical processes that occurs following endosomal escape 643 

but before protein synthesis. What happens during this period remains unclear, which limits a full un-644 

derstanding. Additionally, the amount of modRNA released into the cytosol does not reliably predict 645 

the level of protein expression, previously noted by Liu et al. (Liu et al., 2024) 646 

 647 

2.7 Lipid Degradation and Metabolite Persistence 648 

 649 

Once the modRNA is released, the fate of the lipid components determines the final pharmacodynamic 650 

stage of LNP activity. This aspect, concerning the fate of the individual lipids after they deliver their 651 

payload, is rarely discussed or addressed. The LNPs do not simply vanish; instead, they are disassem-652 

bled in vitro, metabolized, and cleared at different rates depending on the lipid chemistry. For example, 653 

cholesterol may form oxysterols with immune effects, while DSPC can accumulate in organs, poten-654 

tially altering membrane fluidity.  655 
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Both cholesterol and DSPC are natural lipids, but they are manufactured synthetically. Clearance path-657 

ways remain poorly characterized, necessitating further study. These are further delineated in Table 4. 658 

 659 

PEGylated Lipids 660 

 661 

The pegylated lipid plays a key role in the lipid matrix of the LNP, despite its small molar ratio, because 662 

it extends outward on its surface, which is necessary for LNP stability during formulation and stor-663 

age.(Zhang et al., 2025) This also allows for increased in vivo circulation time since the PEG lipid im-664 

pedes cellular uptake and endosomal escape, but this then creates the so-called “PEG dilemma.” As a 665 

result, PEG-lipids with shorter C-14 acyl chains were used in the LNPs, which gradually diffused out of 666 

the particles and provided temporary stealth properties, achieving higher transfection efficiency than 667 

longer, more persistent PEG-lipids.(Mukai et al., 2022) Once the PEG-lipid is sloughed off, it is metab-668 

olized by the liver and kidneys, where the lipid component undergoes enzymatic hydrolysis and β-oxi-669 

dation which is standard processes for lipids. The pegylated part, being a polymer of ethylene glycol, is 670 

either excreted in urine or broken down into smaller oligomers. Although PEG-lipids are designed to 671 

quickly detach from the LNP surface once in circulation or shortly after uptake, they can remain associ-672 

ated. Then they can be internalized with the particle and undergo endosomal trafficking to lysosomes, 673 

where the lipid portion is degraded and the PEG chains are either excreted or slowly metabolized.(Mui 674 

et al., 2013) 675 

 676 

Ionizable Lipid 677 

 678 

No clinical data exist for ALC-0315 and SM-102 regarding their retention and duration of activity in 679 

humans. Although they are labeled as "biodegradable" after their ester bonds are hydrolyzed within tis-680 

sues and release their fatty acid tails, their overall ability to degrade doesn't truly improve, since com-681 

mon degradation pathways like β-oxidation are not consistently used. (Jörgensen et al., 2023)  682 
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Due to their sterically hindered ester structure, they are slowly hydrolyzed over several days. Jörgensen 684 

et al. highlight that these lipids usually have stable structures and multiple tertiary amines, which slow 685 

down their degradation and may cause toxicity. (Jörgensen et al., 2023) When ALC-0315 undergoes es-686 

ter cleavage, it forms a doubly de-esterified metabolite that remains cationic and can reach metabolic 687 

sites such as mitochondrial membranes more quickly than longer lipids,(Eygeris et al., 2022; Jörgensen 688 

et al., 2023)possibly leading to ROS production, cytokine release and membrane disruption. As a result, 689 

the persistence of these shorter-chain lipids could lead to ongoing toxicity after exposure, (Hou et al., 690 

2021; Inácio Â et al., 2011) but data in humans is sparse. Therefore, there is an urgent need to develop 691 

new combinatorial reactions that can generate degradable ionizable lipids for potent RNA delivery. 692 

(Han et al., 2021) 693 

 694 

Lipid Adducts  695 

 696 

An underrecognized risk for LNPs is the potential for lipid adduct formation, which occurs in storage. 697 

The head groups of tertiary amine-based lipids can form N-oxides and, consequently, fatty aldehyde 698 

impurities due to the thermodynamic instability of the LNPs and the oxidative impurities generated 699 

during the complex processing of the ionizable lipid.(Birdsall et al., 2024; Zhichang Yang, 2023) These 700 

aldehydes can react with modRNA nucleobases, especially adenine and cytidine, inside the LNP to 701 

form covalent bonds (Figure 6e). Adduct levels increase with storage time and temperature, making 702 

the modRNA untranslatable once injected. Moderna scientists(Packer et al., 2021) first reported adduct 703 

formation in 2021, highlighting the lack of validated assays for detecting these adducts during manufac-704 

turing. Moderna also noted that the Tris buffer used in their product acts as an aldehyde sink,(Moderna, 705 

2022) enabling more extended storage at 2–8°C and reducing adduct formation with the modRNA. 706 

Notably, Pfizer switched from PBS to Tris buffer in October 2021, raising questions about the amount 707 

and reactivity of adducts in their early batches (Table 1). 708 

  709 



   

 

   

 

The damaged adducted modRNA, once taken up by the cell, may be perceived as abnormal or viral-like 710 

by cellular sensors, which may trigger inflammatory signals or interferon responses.(Cordes et al., 2025; 711 

Maelfait et al., 2020) Post-transcriptional interference, including adduct-induced damage, is 712 

hypothesized to contribute to systemic immune dysregulation, ribosomal stalling and collision with 713 

trailing ribosomes, and exaggerated inflammatory responses(Cordes et al., 2025), especially in 714 

vulnerable individuals.(Acevedo-Whitehouse & Bruno, 2023; Rigby & Rehwinkel, 2015) Research on 715 

secondary amines and reactive aldehydes (e.g., 4-HNE from lipid peroxidation) indicates they are 716 

cytotoxic and may affect protein folding or function, leading to the formation of neoantigens that can 717 

provoke undesired immune responses or contribute to oxidative stress and lysosomal dysfunction. 718 

(Bitounis et al., 2024; Dalleau et al., 2013; Fritz & Petersen, 2013) However, direct in vivo evidence of 719 

adduct formation after LNP uptake has not been confirmed. Moderna is actively exploring strategies to 720 

reduce covalent bonds and RNA-LNP adducts, acknowledging their potential toxicity.(Meredith Packer  721 

et al., 2022) Similarly, DNA-LNP adducts could form with residual DNA in the vaccines, potentially 722 

triggering interferon production.(Atianand & Fitzgerald, 2013) It is unclear whether BioNTech 723 

considers these phenomena. Alternative ionizable lipids with piperidine heads have been developed to 724 

mitigate this risk and enhance thermal stability.(Hashiba, Taguchi, Sakamoto, Otsu, Maeda, Ebe, et al., 725 

2024) However, the risks of adduct formation anticipated by developers have not yet been 726 

systematically evaluated in vaccine studies. 727 

 728 

The recent EMA draft guideline for modRNA vaccines (EuropeanMedicinesAgency, 2025) emphasizes 729 

the control of adduct formation in manufacturing but does not delineate the possible adverse effects. 730 

Continuous pharmacovigilance and advanced in vivo assays are essential to clarify these uncertainties in 731 

vivo, particularly for vulnerable groups. The lipid components, metabolic pathway, and knowledge gaps 732 

are summarized in Table 4. 733 
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.Lipid 

Compo-

nent 

Metabolic 

Pathway 

Clearance Persistence/Risks Knowledge 

Gaps 

Choles-

terol 

Sterol metabo-
lism to 
HDL/LDL; 
possible oxida-
tion to oxyster-
ols 

Likely recycled 
endogenously, but 
this has not been 
studied 

Oxysterols are immunologi-
cally active; (Back et al., 2024) 
cholesterol crystals form de-
pending on saturation, may 
contribute to CARPA 
(Anindita et al., 2024) 

No direct oxys-
terol data availa-
ble after LNP 
uptake, 

DSPC 

(helper li-

pid) 

Phospholipase 
degradation is 
incorporated 
into mem-
branes. 

Displays unu-
sual rigidity. (Li 
et al., 2015), fa-
vours bleb for-
mation.(Simon-
sen, 2024; 
Zhang & Barz, 
2025) 

 

Days-weeks can 
accumulate in the 
liver, spleen, 
heart, kidney, lung 
(Quick et al., 
2022) 

DSPC can produce phospho-
lipid-derived products that 
may alter membrane structure 
and stability (Jeschek et al., 
2016); (Rezaei et al., 2025). 

Can affect lipid raft integrity 
and functions like increased 
T-cell signaling (Zech et al., 
2009) 

May also lower immune host 
surveillance. (Sfera et al., 
2022) 

The effect on li-
pid rafts across 
tissues is not 
fully understood 
nor thoroughly 
examined with 
repeated dosing. 

PEGylated 

lipids 

(ALC-0159, 

PEG-

DMG) 

See text 

Lipid moiety 
hydrolyzed, 
PEG excreted 
renally 

Renal and hepato-
biliary 

PEG accumulation with re-
peated dosing; CARPA risk 

Vacuolations due to incom-
plete metabolism in lysosomes 
have been seen in animal stud-
ies (class effect) 
(TherapeuticGoodsAdministra
tion, 2021) but not in hu-
mans(Obeng et al., 2025) 

Human persis-
tence and dose 
thresholds un-
clear; PEG al-
lergy may limit 
LNP use for 
other indica-
tions(Song et al., 
2025) 

Ionizable 

lipids 

(ALC-0315, 

SM-102) 

See text 

Hydrolysis to 
amines/fatty 
acids; branched 
tails resist β-ox-
idation (ALC-
0315>>SM-
102) 

Slow hepatic 
clearance; ALC-
0315 takes up to 3 
weeks to fully me-
tabolize (t½=139 
hrs)(EMA/70738
3/, 2020 Corr.1*1) 

SM-102 half-life  
shorter at 7.3h(Y. 
Ren et al., 2025) 

Tissue persistence of metabo-
lites, including in mitochon-
dria. 

 

In silico experiments demon-
strate membrane embedding, 
which may enhance persis-
tence(Aliakbarinodehi et al., 
2024; Ermilova & Swenson, 
2023) 

ROS production, cytokine re-
lease, membrane disruption or 
tearing 

Identity of me-
tabolites; long-
term accumula-
tion not well 
studied 



   

 

   

 

Lipid Ad-

ducts 

See text 

Reactive 
amines/alde-
hydes cova-
lently bind pro-
teins and nu-
cleic ac-
ids(Packer et al., 
2021) 

Clearance uncer-
tain 

Persistent adducts, potential 
neoantigen formation, oxida-
tive damage are possible 

No standardized 
in vivo assays, 
frequency, and 
their impact in 
vivo are un-
known. 

Table 4: Lipid Components, Metabolic Pathways and Knowledge Gaps HDL=high density 735 

lipoprotein; LDL=low density lipoprotein; PEG=pegylated lipid CARPA=complement activation 736 

reaction pseudoallergy; ROS=reactive oxygen species 737 

 738 

2.8 Drug Interactions 739 

 740 

Although regulatory agencies generally assume vaccines do not cause drug–drug interactions, early evi-741 

dence suggests this may not hold for modRNA–LNP vaccines. Case reports and cohort analyses docu-742 

ment clinically relevant changes in clozapine pharmacokinetics post-vaccination, in some cases leading 743 

to neutropenia and hospitalization (Bayraktar et al., 2021; Imai et al., 2022; Thompson et al., 2021). The 744 

mechanism is consistent with inflammation-mediated suppression of CYP450 enzymes, particularly 745 

CYP1A2 and CYP3A4, central to clozapine metabolism (Eiermann et al., 1997). 746 

 747 

While most effects appear mild or transient (Demler & O'Donnell, 2023), therapeutic drug monitoring 748 

has been recommended for narrow-index drugs like clozapine (Veerman et al., 2022). Substantial 749 

increases in escitalopram, fluoxetine, trazodone, and quetiapine levels have also been reported (Kuzin 750 

et al., 2023), and a case of neuroleptic malignant syndrome with adrenal insufficiency occurred in a 751 

patient on valproic acid (Mizuno et al., 2022). 752 

 753 

This concern extends beyond psychotropic or antiepileptic medications. Inflammatory cytokines such 754 

as IL-6, TNF-α, and interferon-γ, induced by both infection and vaccination, down-regulate multiple 755 

hepatic CYP isoenzymes (Lim et al., 2023). Clinical studies in COVID-19 patients have shown that 756 

elevated C-reactive protein levels are associated with reduced metabolism of midazolam and tacrolimus, 757 

potentially leading to oversedation or immunosuppressant toxicity. 758 

 759 

Because many common drugs, such as statins, benzodiazepines, antiepileptics, and 760 

immunosuppressants, are CYP3A4(Villemure et al., 2023) or CYP2C9 substrates(Lim et al., 2023), 761 



   

 

   

 

transient suppression of these pathways after vaccination could alter drug exposure in a clinically 762 

significant way. Yet regulators do not currently require pharmacokinetic interaction studies for 763 

vaccines, leaving these risks under-characterized, and clinicians may be unaware. 764 

 765 

The possible pharmacodynamic interactions with lipid nanoparticles themselves may be overlooked. 766 

Recent work has shown that small-molecule drugs can directly influence endosomal trafficking and  767 

escape. Tricyclic cationic amphiphilic drugs (TCADs), such as tricyclic antidepressants, first-generation 768 

antipsychotics, and certain antihistamines, share structural features with ionizable lipids and have been 769 

repurposed in experimental systems to improve intracellular delivery of nucleic acids.(Debisschop et al., 770 

2024) In animal studies, nortriptyline-containing “CADosomes” demonstrated delivery efficiency 771 

without the need for synthetic ionizable lipids,(Bogaert et al., 2022) suggesting a structural and 772 

functional overlap between cationic amphiliphic drugs (CADs) and LNP excipients. While this may be 773 

exploited experimentally to enhance delivery, it raises the question of whether patients already taking 774 

CAD-class drugs (e.g., antipsychotics, some antidepressants, etc) may experience altered LNP 775 

trafficking or immune responses following vaccination. 776 
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Vaccine-Drug Interactions May Be Underreconized  
 

Pharmacokinetic and pharmacodynamic interactions are not regularly evaluated during vaccine devel-
opment, as regulatory agencies generally assume there are no clinically significant drug–vaccine inter-
actions. (WorldHealthOrganization, 2005) However, rare case reports with influenza (Carnovale et 

al., 2018) and COVID-19 modRNA–LNP vaccines challenges this assumption. 
 

Case reports of clozapine toxicity, (Thompson et al., 2021), observations of altered serum levels of 
antiepileptics,(Mizuno et al., 2022) and observational studies linking inflammation-induced cytokines 
to CYP450 suppression(F. Liu et al., 2023) all suggest a potential for transient but clinically signifi-

cant interactions. 
 

Additionally, lipid nanoparticles exhibit pharmacodynamic interactions, such as altered endosomal 
trafficking, which can occur in patients taking psychotropic or other medications and remain largely 

unexplored. 
 

Overall, these gaps suggest that vaccine–drug interactions are both possible and clinically relevant, 
but are currently underestimated due to existing regulatory frameworks. 

 778 

Other drug classes have also been implicated in modifying endosomal escape. Proton pump inhibitors, 779 

such as esomeprazole, have recently been investigated as adjuvants in preclinical LNP formulations, by 780 

raising endosomal pH, enhancing LNP delivery and immune responses via lysosomal destabilization in 781 

murine models.(Kim et al., 2025) PPI use has also been shown to increase risk of severe COVID-19 782 

outcomes.(G.-F. Li et al., 2021) For chronic PPI users, altered transfection efficiency could amplify 783 

AEs, warranting caution and further research into vaccine safety profiles. These findings suggest that 784 

the LNP itself functions as a cationic amphiphilic drug (CAD), and its toxicological profile may overlap 785 

with that of CAD drugs (Gould & Templin, 2023). Endosomal escape enhancers, whether intentionally 786 

incorporated into formulations or present coincidentally in patient medications, can increase cytosolic 787 

release but also exacerbate lysosomal damage and galectin-mediated inflammation.(Dowdy, 2023; 788 

Omo-Lamai et al., 2025)This dual potential to both enhance efficacy and intensify toxicity underscores 789 

the need for pharmacovigilance analyses examining outcomes in patients on CADs, or other drugs at 790 

the time of vaccination. Together, these observations argue that vaccine–drug interactions are not only 791 

possible but clinically relevant, and their continued neglect in regulatory assessment represents a sub-792 

stantial oversight. 793 
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3 Challenges, Gaps and Future Directions 795 

 796 

The modRNA-LNP platforms are transformative technologies with significant clinical potential. How-797 

ever, several critical uncertainties remain. These challenges come from the complex physicochemical 798 

properties of the technology and from broader translational and regulatory issues. As a result, there is 799 

an ongoing need for sustained mechanistic research and transparent long-term studies. 800 

Category Documented Challenges Broader Uncertainties Implications 

Physicochem-

istry 

Reliable characterization of 
particle size, encapsulation, 
payload, and stability re-
mains challenging(Nogueira 
et al., 2024) 

No benchmark lipid formu-
lation exists.(Simon et al., 
2023) Standards and assays 
are continually evolv-
ing.(Pavlin et al., 2025; Unit-
edStatesPharmacopeia, 2024; 
Webb et al., 2025) 

Black box formulation, 
the dynamic nature of 
LNPs results in unpre-
dictable in vitro and in 
vivo behaviour 

Comprehensive ana-
lytical standards are 
required, including 
proteomic and lip-
idomic profiling. 

Biodistribu-

tion and 

Transfection 

Conflation of biodistribution 
with gene expression,(Ci et 
al., 2023; Vervaeke et al., 
2022) widespread off-target 
distribution.(Luo et al., 2025; 
Pateev et al., 2023) 

 

Limited ability to 
achieve tissue-specific 
delivery beyond the 
liver.(Hosseini-Kharat 
M, 2025) Transfection 
is random and uneven; 
emerging tools like sin-
gle-cell Nano mapping 
are still experi-
mental.(Luo et al., 2025) 

Therapeutic out-
comes and adverse 
effects remain diffi-
cult to predict; sin-
gle-cell methods are 
needed. 

Protein Co-

rona 

Formation is dynamic, spe-
cies-specific, and patient-de-
pendent, affecting biodistri-
bution and immune recogni-
tion.  

Levels of cell uptake do not 
correlate with increased 
mRNA translation likely due 
to protein corona-induced 
lysosomal trafficking (Voke 
et al., 2025)  

Measurement remains chal-
lenging.(Francia et al., 2024) 

Patient variability (in-
cluding age, sex, and 
comorbidities)(Sun et 
al., 2024) complicates 
predictability. 

Results in nonlinear 
uptake, increased risk 
of immune activa-
tion, and reduced tar-
geting accuracy. 

 



   

 

   

 

Endosomal 

Escape 

Low efficiency (1-15%); high 
stochastic cell-to-cell varia-
bility;(Johansson et al., 2025; 
Paramasivam et al., 2021) 
“dark hour” between escape 
and gene expression is not 
well understood.(Müller et 
al., 2024) Attempts to im-
prove endosomal escape 
raise toxicity(Dowdy, 2023) 
LNPs alter cell membranes 
(Escalona-Rayo et al., 2024; 
Schlich et al., 2021) 

Escape remains nonlin-
ear, context-dependent, 
with a bottleneck that 
limits potency(Chatter-
jee et al., 2024; Johans-
son et al., 2025; Para-
masivam et al., 2021) 

“Bottleneck” in-
creases unpredictabil-
ity of therapeutic ef-
ficacy.(Chatterjee et 
al., 2024) 

Non-linear and con-
text-dependent; bell-
shaped curve(Bates 
et al., 2025) 

Persistence 

and Lipid Me-

tabolism 

PEG-lipid immune ef-
fects,(Bakos et al., 2024), 
possible lysosomal 
stress,(Bitounis et al., 2024; 
Paramasivam et al., 2021), 
unknown toxic ionizable li-
pid metabolites,(Jörgensen et 
al., 2023), and cholesterol 
crystallization (Anindita et 
al., 2024), DSPC membrane 
effects 

Long-term safety of re-
peated dosing remains 
unclear. 

Risks of chronic ac-
cumulation, inflam-
mation, or metabolic 
disruption may be 
possible; requires 
further investigation 
and focused studies 

Manufacturing 

and stability 

Documented batch hetero-
geneity;(EMA/707383/, 
2020 Corr.1*1) instability in 
plasma; (Zhang & Barz, 
2025) post-injection remod-
eling’;(Y. Ren et al., 2025) 
cold-chain and scale-up chal-
lenges.(Oude Blenke et al., 
2023) 

Lipid adducts an unrecog-
nized concern 

Effects of instability on 
potency and safety re-
main uncertain. 

Variable potency, po-
tential side effects, 
and administrative 
challenges can com-
promise efficacy and 
increase adverse 
event risk. 

Lipid adduct for-
mation may affect 
therapeutic outcomes 
and AE profile 

Drug Interac-

tions 

Case reports of clozapine 
toxicity(Thompson et al., 
2021) and altered antiepilep-
tic levels after vaccina-
tion;(Kow & Hasan, 2021) 
CYP450 suppression during 
inflammation is well estab-
lished.(Villemure et al., 2023) 

The degree to which 
modRNA–LNP vac-
cines transiently alter 
drug metabolism 
(CYP3A4, 2C9, 1A2) or 
interact with lysosomo-
tropic drugs (e.g., psy-
chotropics) or other 
drugs remains unknown 

Vaccine–drug inter-
actions are not sys-
tematically assessed; 
potential underrecog-
nized risk for pa-
tients on narrow 
therapeutic index 
drugs (clozapine, tac-
rolimus, midazolam). 



   

 

   

 

Regulatory 

and Data Gaps 

LNPs have adjuvant-like ac-
tivity, as acknowledged by 
the FDA,(Peden, 2022) but 
were classified as excipients 
in regulatory submissions. 

Pfizer/BioNTech’s Co-
mirnaty lacked transfection 
and target-cell-specific data, 
and CARPA was not as-
sessed.(EMA/707383/, 2020 
Corr.1*1) 

The FDA did not evaluate 
Moderna’s LNPs sepa-
rately.(Hemmrich & McNeil, 
2023) 

New EMA guidelines on the 
quality of modRNA vaccines 
reinforce the classification of 
excipients.(EuropeanMedi-
cinesAgency, 2025) 

Current regulatory 
framework does not 
capture transfection and 
nanoparticle-specific 
risks; transparency and 
public trust remain un-
resolved issues. 

Drug interactions were 
not assessed 

Incomplete safety 
evaluation, risks con-
fusion, and skepti-
cism. 

Advanced methods, 
including proteomics 
(Boros et al., 2024; 
EuropeanMedi-
cinesAgency, 2025) 
and lipid profil-
ing,(USFDA, 2022) 
are needed to fully 
characterize LNP–
modRNA formula-
tions and their phar-
macological and im-
munostimulatory 
properties. 

Secondary pharma-
cology, drug interac-
tions, assessment of 
long term risks re-
quired for regulatory 
assessment of LNPs 
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TABLE 5 Critical Uncertainties and Challenges of modRNA-LNP Technology 802 

 803 

Considering the factors discussed, processing and administering into a living organism involves numer-804 

ous disruptive factors. As a result, neither biodistribution nor transfection follows a linear pattern, and 805 

unpredictable variations in the measured values occur depending on the in vivo model. 806 

It also remains plausible that both a nonlinear distribution pathway and the transfection rate, dependent 807 

on the formulation of the LNPs and the specific lipid components, may occur. From a pharmacoki-808 

netic perspective, the challenges associated with LNP technology, as identified in earlier research, have 809 

not been fully addressed. 810 

 811 

These concerns are not isolated technical issues but interconnected challenges. The physicochemical 812 

heterogeneity and the dynamic structure of LNPs influence biodistribution, which in turn depends on 813 

the dynamic protein corona; meanwhile, inefficiencies in endosomal escape exacerbate variability in 814 

therapeutic outcomes. The toxicological dynamics of the extracellular LNPs are unstudied(Bitounis et 815 

al., 2024), as is the possibility of lysosomal stress or dysfunction which is increasingly linked to numer-816 

ous diseases, such as neurodegenerative disorders.(Feng et al., 2024) Likewise, patient heterogeneity 817 

amplifies these uncertainties, making it unreasonable to expect uniform efficacy or safety across popu-818 

lations and making it difficult to predict clinical response or an adverse event profile. Gaps in regulatory 819 

requirements, such as critical quality attributes, target-cell specificity, biodistribution,(Vervaeke et al., 820 

2022) immune effects, drug interactions, and long-term toxicology, further undermine public confi-821 

dence and complicate post-marketing safety and surveillance. 822 

 823 

We assert that the interplay between protein corona composition, cellular uptake pathways, endosomal 824 

escape and lipid metabolism critically influences cell tropism, protein production, and the stability of 825 

both the lipid and RNA components. These aspects should be carefully considered and require further 826 

investigation. 827 
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Given the dependencies shown, it is worth questioning whether parameters reliant on highly individual 829 

physiological factors, such as age-related metabolic changes, pre-existing conditions, medications, base-830 

line protein levels, or temporal fluctuations in protein concentrations, can be effectively controlled or 831 

standardized.(J. Li et al., 2021; Wegler et al., 2019) 832 

 833 

Furthermore, these factors are inherently difficult to quantify and measure because they vary on an in-834 

dividual basis, and because in vitro measurements do not always reflect the in vivo behaviour of this tech-835 

nology. This raises fundamental challenges for the translation of LNP-based therapeutics into clinical 836 

practice. 837 

 838 

Discussion 839 

 840 

Looking ahead, various strategies are being explored to address the unpredictability of current mo-841 

dRNA–LNP systems. One approach involves developing liposomal LNP hybrids, which may lower bi-842 

ocorona complexity and enable extra-hepatic targeting.(M. H. Y. Cheng et al., 2025) Exosome-inspired 843 

or engineered extracellular vesicles offer another promising avenue,(Iqbal et al., 2024) leveraging their 844 

natural ability to cross physiological barriers and evade immune clearance.(Maugeri et al., 2019) 845 

 846 

On the chemistry front, new classes of ionizable lipids with improved degradation profiles are being 847 

developed to reduce persistence and toxicity.(Han et al., 2021; Jörgensen et al., 2023; Omo-Lamai et al., 848 

2025) Simultaneously, advances in single-cell mapping technologies aim to clarify stochastic uptake and 849 

expression at unprecedented resolution,(Bates et al., 2025; Johansson et al., 2025; Luo et al., 2025; Mül-850 

ler et al., 2024) potentially making delivery more predictable. Improvements in assay methodol-851 

ogy(Pavlin et al., 2025; Webb et al., 2025)and in formulations such as lyophilization(De & Ko, 2023) 852 

look promising. Together, these innovations and others suggest that although current formulations re-853 

main a biological “black box,” an expanding toolkit is being developed to potentially make modRNA 854 

delivery more controllable, targeted, and safer. 855 
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These uncertainties highlight the nonlinear and context-dependent nature of LNP-modRNA interac-857 

tions, suggesting a pathogen-like effect on the cell beyond its inherent cytotoxicity. Insights from cati-858 

onic amphiphiles such as antipsychotic drugs may enhance the understanding of these complex parti-859 

cles.(Gould & Templin, 2023; Sfera et al., 2022) 860 

 861 

Progress will likely require integrating advanced in vitro and in vivo models,(Bitounis et al., 2024) single-862 

cell resolution technologies,(Luo et al., 2025) and standardized analytical frameworks(Simon et al., 863 

2023; UnitedStatesPharmacopeia, 2024) to achieve this goal.  864 

 865 

However, it must be considered that in vitro experiments with such a highly variable technology in vivo 866 

require a systems biology perspective. Neither membrane structural processes nor downstream signal 867 

transduction(Thiemicke & Neuert, 2023; Vijay & Gujral, 2020)follow linear dynamics. 868 

 869 

Additionally, incorporating longitudinal human data and comprehensive regulatory strategies will be 870 

crucial to ensure both efficacy and long-term safety. This will be a challenging task given the nonlinear 871 

dynamic nature of this technology.(Fung et al., 2024) 872 

 873 

Summary 874 

 875 

To the best of our knowledge, this work is the first to systematically synthesize the current understand-876 

ing of LNP properties while highlighting unresolved challenges that have become increasingly evident 877 

in recent years but remain insufficiently addressed in clinical applications. 878 
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