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Abstract

The lipid nanoparticle (LNP) platform for delivering modified messenger RNA (modRNA) represents
a transformative yet inherently complex and unpredictable technology. This narrative review synthe-
sizes multidisciplinary evidence to explore the physicochemical basis, biological interactions, pharmaco-
dynamic uncertainties, and safety challenges associated with LNPs and LNP-modRNA interactions. We
describe how LNP self-assembly gives rise to variable structures with inconsistent modRNA payloads,
as well as dynamic protein corona formation and aggregation phenomena that complicate the reliable
characterization of these systems. After injection, LNPs undergo rapid biotransformation, including
PEG-lipid shedding, biodistribution, and cellular uptake, which current analytical techniques cannot
tully capture.

Importantly, endosomal escape, which leads to the disruption of the endosome and the release of the
payload, occurs within a narrow time window, is often inefficient, and results in inconsistent delivery.
In addition, lipid metabolites, cell membrane modulation, and adduct formation pose poorly character-
ized risks.

Keywords: lipid nanoparticles, mRNA vaccines, protein corona, endosomal escape, unpredictability,
drug interactions, safety
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Figure 1

Conceptual overview of the unpredictable LNP platform. Four key challenges are highlighted. 1. LNP
heterogeneity (variable modRNA content, aggregates, impurities) 2. Protein corona dynamics (patient-
specific, uptake, biological identity) 3. Lipid persistence and toxicology (PEG lipid immunogenicity,
modRNA-lipid adducts) and 4. Endosomal escape bottleneck (5-15min window, low efficacy,
membrane disruption) Original work using Canva by S. Natsheh. Icons made by Pixel

perfect from www.flaticon.com

1 Physicochemical Foundations of the LNPs

1.1 Introduction

The physicochemical properties of lipid nanoparticles (LNPs), including their size, shape, surface reac-
tivity, and lipid composition, are crucial for their role in delivering modRNA to cells. These in vitro
properties govern LNP stability, encapsulation efficiency, and the ability to penetrate the cell membrane
and transport the modRNA into the cytosol. The physicochemical properties of LNPs profoundly af-
fect the lipid chemistry of the cell membrane, which varies between different cells and cell types. This is

important since the membrane is inherently connected to the intracellular signal transduction
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network, which is initiated and regulated by endocytic processes and receptor conformational changes,
many of which depend on the physicochemical properties of the LNPs. This section thoroughly inves-
tigates the LNP composition, structure, and nanoparticle characteristics, establishing a foundation for

understanding their behavior in vivo.

LNPs are by no means new.(Cullis & Peloner, 2024; Tenchov et al., 2021) Research into lipid carrier

systems with a wide variety of formulations has been ongoing for over 60 years. Liposomes are an ear-
lier type of LNPs, consisting of one or multiple lipid bilayers with an aqueous core. They are commonly
used in drug delivery because hydrophilic drugs can be enclosed within the aqueous interior, while hy-
drophobic drugs are trapped within the hydrocarbon chains of the lipid bilayer. Liposomes cannot effi-
ciently carry nucleic acids, such as mRNA, due to the size, polyanionic nature, and hydrophilicity of the

mRNA, which motivated the development of ionizable lipid-based LNPs. Additionally, nucleic acids

are quickly degraded by endogenous nucleases in bodily fluids. (Kloczewiak et al., 2022) To address
these issues, LNPs incorporating ionizable lipids have been developed as delivery vehicles for small in-
terfering RNA (siRNA) and mRNA, thereby protecting fragile cargo from degradation in vivo and fa-

cilitating cellular delivery.

Despite their widespread clinical application in SARS-CoV-2 vaccination, the complex multicomponent
nature of LNP systems leads to heterogeneity and unpredictability at multiple levels of biological inter-
action. Regulatory assessments have traditionally categorized LNPs as inert excipients, but accumulat-
ing evidence points to adjuvant-like properties, complement activation, immunomodulation, and poten-
tial drug—vaccine interactions caused by cytokine-mediated suppression of cytochrome P450 enzymes.
Taken together, these findings suggest that LNPs should be regarded as active pharmacological entities

rather than passive carriers, whose systemic and long-term effects remain incompletely understood.

While prior reviews have explored the properties of LNPs(Tenchov et al., 2021) or safety as-

pects,(Bitounis et al., 2024) the present work represents a first attempt to integrate the unpredictable

and partially stochastic nature of modRNA—LNP systems across their pharmacological dimensions.



78  We argue that this non-linear behavior introduces uncertainty into therapeutic application and chal-
79  lenges precision and predictability. Accordingly, we emphasize the need for enhanced regulatory over-
80  sight, thorough mechanistic studies, clinical pharmacology assessments, and the application of ad-

81  vanced analytical techniques to better characterize and evaluate this novel platform.

82
83 1.2 Composition

84

85  The currently approved LNP formulations for the COVID-19 vaccines contain four lipids: (1) an
86 ionizable cationic lipid, (2) a helper lipid DSPC (1,2-distearoyl-sz-glycero-3-phosphocholine), (3)
87  cholesterol, and (4) a polyethylene glycol (PEG)-lipid conjugate.(Chaudhary et al., 2024) Each lipid

88 component of the nanoparticle and its molar ratio are critical to the activity and disposition of the
89  modRNA. Similarly, the first approved LNP-RNA product, patisiran (Onpattro), contains short
90 interfering RNA (siRNA) in an LNP formulation designed to deliver siRNA to the liver and silence the

91 expression of transthyretin, a protein that causes transthyretin amyloidosis (ATTR).
92

93  Developing and scaling up Onpattro® paved the way for LNP-modRNA vaccines, which are the

94 fastest vaccines ever produced.(Hald Albertsen et al., 2022)
95

96  The ionizable lipid is crucial for delivering nucleic acids across cell membranes. Composed of a tertiary
97 amine head, a linker, and a hydrophobic tail, it undergoes protonation under acidic conditions. This
98 allows it to bind to negatively charged modRNAs, specifically via the tertiary amine head, owing to the

99  unique properties and pH-dependent surface charge of ionizable lipids (Han et al., 2021). The design of

100  the ionizable lipid, such as tail length(Hashiba, Taguchi, Sakamoto, Otsu, Maeda, Suzuki, et al., 2024),

101  saturation, and branched tails, (Petersen et al., 2024) influences the efficacy and toxicity of the LNPs.

102 The helper phospholipid (DSPC) enhances LNP bilayer stability, thereby preventing leakage of nucleic
103 acid cargo. It provides the structural foundation for membrane fusion, which is necessary for cellular
104 uptake. Cholesterol is crucial for maintaining the overall shape, fluidity, and permeability of the bilayer

105 membrane, as well as supporting other phospholipids for effective encapsulation and protection of the

106
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modRNA cargo,(Wang et al., 2024). Cholesterol accounts for about 45% of the LNP content and can

exist in a crystalline-like state within the LNP.(Anindita et al., 2024)

The PEG lipid conjugate serves primarily to decrease LNP size, shield the LNP from rapid clearance

by the reticuloendothelial system (RES), stabilize LNPs via steric repulsion, and prevent protein

adsorption due to the hydrophilic chains extending from the surface.(Hald Albertsen et al., 2022) It
typically only comprises about 1.5% of the LNP content. The immunogenicity of PEG has drawn

attention due to the development of anti-PEG antibodies after repeated exposure.(Song et al., 2025)

1.3 Structure of the LNPs

For COVID-19 vaccines, the exact structures of modRNA-LNPs remain unknown due to their self-
assembly nature and the properties of the lipids used. These Janus particles, which exhibit two or more
distinct physical properties, remain poorly understood. Small-angle neutron scattering (SANS) reveals
that blebs (separate aqueous-filled compartment within a lipid nanoparticle, distinct from the main lipid
structure) are common, but they do not always indicate the presence of modRNA within them.(Chen et
al., 2025) In fact, identifying modRNA-free LNPs has proved particularly challenging. Studies estimate
that 12-80% of LNPs (most recently 30-35%) may lack any modRNA, depending on the manufacturing

process, the ionizable lipid used, and the analytical method employed.

(Lietal, 2022; Munter et al., 2024; Pavlin et al., 2025; Schober et al., 2024) The modRNA payload is

especially important, particularly regarding the number of strands and the structure of the modRNA, as

the random packaging of modRINA constructs influences LNP behaviour and potency.(Liao et al.

2025) (Renzi et al., 2024) (Di et al., 2022) Therefore, the relationship between the declared dose (ug of

RNA) and the number of RNA-containing particles is not straightforward, and this correlation has yet

to be fully described.
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Currently, there is no reliable analytical method to accurately characterize either the content (i.e., the

modRNA,(Webb et al., 2025)) or the structure of LNPs(Sanval et al., 2021), so orthogonal techniques

are necessary.(Parot et al., 2024; Pavlin et al., 2025) Moreover, LNPs with blebs may also exhibit

different immunogenicity, biodistribution, or 7z vivo properties that have not been adequately

studied.(Simonsen, 2024) Mixing and filling parameters during manufacturing and sample handling of

filled vials by clinicians also impact modRNA payload.(Matthessen et al., 2024) Furthermore, empty
LNPs may reduce the effective dose, increase variability in therapeutic effectiveness since these are the

ones most likely to transfect cells,(Liao et al., 2025) and accumulate in tissues possibly acting as

adjuvants,(Lee et al., 2023) an understudied risk. These recent findings have raised questions about the

formulation and composition of safe and effective LNPs for modRNA therapeutics and makes it
difficult to comply with recommendations for LNP characterization by regulatory authorities.

(EuropeanMedicinesAgency, 2025) Lyophilization (freeze drying) could reduce empty LNPs and

improve stability at room temperature (De & Ko, 2023) and improve mixing, but remains

investigational.

1.4 The Nanoparticle Nature of LNPs

Due to their small size, nanoparticles have an extremely high surface area relative to their volume,

resulting in unique chemical, physical, and biological properties not found in bulk materials. These
properties enhance the LNPs’ reactive interactions with the cell membrane, such as immune responses

and cellular uptake.(Yuan et al., 2024)

Importantly, the biological behaviour of the LNP formulation cannot be inferred merely from the
isolated properties of individual lipids. This is because the physicochemical characteristics of the entire
LNP present in the final formulation, such as size distribution, shape, surface charge or zeta potential,

agglomeration state, and lipid packing,(Abbasi et al., 2023) arise from interactions among all the

components. For example, the degree of lipid unsaturation and branching affects not only membrane

fusion capabilities but also biodegradability and systemic persistence.(Yang et al., 2022) Secondly,

variations in size, modRNA payload, encapsulation rate, stability, lipid impurities, and other
physicochemical factors may affect the safety and efficacy of these products, as demonstrated in

preclinical and clinical studies.(Yuan et al., 2024) (see Table 1).

The LNPs are dynamic and unstable
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Most recently, evidence suggests that the physiological stability of RNA-LNPs significantly impacts
their therapeutic efficacy, pharmacokinetics (PK), tissue-targeting ability, and toxicity.(Zhang & Barz,
2025) Instability in blood or plasma can lead to premature degradation of LNPs and the release of
modRNA, potentially altering biodistribution and immune effects or affecting potential inflammation,
depending on the specific formulation.(Eygeris et al., 2022)T he Moderna and Pfizer/BioNTech
vaccines differ in LNP behaviour. The modRNA of the Moderna COVID-19 vaccine persisted longer

in plasma than the ionizable lipid SM-102 itself, suggesting lipid transfer to lipoproteins or extracellular

vesicles (EVs).(IKent et al., 2024; Y. Ren et al., 2025). The implications for cellular function remain

uncertain. Conversely, the ionizable lipid of Pfizer/BioNTech’s vaccine, ALC-0315, showed prolonged
lipid exposure but lower levels of modRNA in plasma.(Y. Ren et al., 2025) This could indicate

instability of the intact LNP in plasma, possibly caused by trace impurities of the ionizable lipid (Liau et

al., 2024) or complete disintegration in plasma(Bitounis et al., 2024) These differences between the

approved vaccines suggest that the specific formulation and manufacturing of the modRNA and lipid
components (Figure 2) are distinct both in composition and biological effects, which may influence
vaccine efficacy and outcomes. A comparison of the publicly available compositions, physicochemical
properties, and key formulation parameters of the currently approved LNP-RNA products is shown in

Table 1.
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Figure 2 Schematic Structure
of mRNA-Lipid Nanoparticle

Lipid nanoparticles are mainly composed of
ionizable lipids, cholesterol, phospholipids,
and polyethylene glycol (PEG)-lipid.

The ionizable lipids are cationic (positively
charged) at a low pH (enabling negatively
charged RNA complexation) and neutral at
physiological pH (reducing potential toxic ef-
fects), allowing a better delivery of mMRNA
into the cells via endocytosis.

Phospholipids play a structural role, and cho-
lesterol serves as a stabilizing element in li-
pid nanoparticles. Lipid-anchored PEGs
dominantly deposit on the lipid nanoparticle
surface as a barrier to sterically stabilize
them and reduce nonspecific binding to pro-
teins. Created in BioRender. Seger, F.
(2025)
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Category
Name
Dose, Route

Lipid Components

Molar Ratios (%)

(ionizable cationic
lipid: neutral lipid:
cholesterol: PEGylated
lipid)

Molar N /P ratios

Ionizable Lipid
Properties

LNP Particle Size and
Distribution(Hermosilla
et al., 2023)

modRNA payload
(number of intact
modRINA constructs
per LNP)

Encapsulation
Efficiency (YoEE)*

Stability

Buffer

Pfizer/BioNTech (modRNA)
BNT162b2, Comirnaty

30 pg/0.3 ml, IM

ALC-0315 (ionizable lipid,
Acuitas)

ALC-0159 (pegylated lipid)
DSPC (neutral lipid) Cholesterol

46.3:9.4:42.7:1.6

6

Apparent pKa=6.09
least stable

2 branched chains; moderate

biodegradability

2 chiral centres, 3 stereoisomers
(De et al., 2025)

Widest distribution
(60-5000nm)

Variable (exact payload unclear)

~50% (Schober et al., 2024)

Moderate (Y. Ren et al.. 2025)

Potassium dihydrogen phosphate;
Disodium hydrogen phosphate
dihydrate pH 7-8; Tris
(tromethamine) in October
2021(USEFDA, 2021)

Moderna (modRINA)
mRNA-1273, SpikeVax
50 pg/0.5 mL, IM

SM-102 (ionizable lipid)
PEG-DMG (pegylated lipid)
DSPC (neutral lipid) Cholesterol

50:10:38.5:1.5

6

Apparent pKa=6.68
more stable

1 branched chain; improved

biodegradability

No chiral centres

Wider distribution

(30-1000nm)

Variable (exact payload unclear)

Not reported but likely similar

High (Y. Ren et al., 2025)

Tris (tromethamine)
pH 7-8
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TABLE 1:Composition and Physicochemical Properties of LNPs in Approved modRNA Vaccines
(Abstracted from Schoenmaker (Schoenmaker et al., 2021), Zhang, Akinc(Akinc et al., 2019; Zhang et
al., 2023); EMA(EMA /707383 /, 2020 Corr.1*"),(EuopeanMedicinesAgency, 2021) )

* United States Pharmacopeia uses EE (%), defined as the percentage of RINA or therapeutic cargo that is suc-
cessfully enclosed within the 1.INPs relative to the total amonnt of RINA present in the final sample. Schober et al(Scho-
ber et al., 2024) used encapsulation efficiency as the percentage of input RINA encapsulated in the final LINP product
(EE./%) and found encapsulation rates <50%

1.5 Analytical Challenges and Knowledge Gaps

The physicochemical properties often differ from theoretical predictions based on behaviors observed

in non-biological systems. Despite significant progress, reliable techniques to determine physicochemi-

cal attributes are not yet fully standardized.(UnitedStatesPharmacopeia, 2024) For instance, particle size

varies.(Hermosilla et al., 2023) Using both expired and unexpired batches of BNT162b2 (Comirnaty®)

and m-1273 (Spikevax®), the authors identified three different populations of LNPs for Comirnaty®:
60-65 nm (90% of the total), 600—700 nm (5-10%), and, in two vials examined, 5000 nm (1.2% and
2.8% by volume). Similar results were observed for SpikeVax®, ranging from 30 nm to 1000 nm. These
large particles likely represent agglomerated LNPs, which are visible particles that may have specific

physical, microbiological, and chemical adverse effects.(Liu & Hutchinson, 2024) Aggregates are higher

in thawed vials and may have i vivo risks (e.g., embolism or inflammation)

These issues complicate accurate assessment of their zz vivo behaviors, as zn vitro characterization re-

mains unpredictable and variable.(C. Chen et al., 2023) The need for precise characterization of LNPs,

including size, blebs, empty structures, and other parameters, has driven the development of techniques
to identify, observe, and measure significant differences between formulations and batch-to-batch vari-

ability of the same LNP-RNA system.(Parot et al., 2024) For instance, Pavlin ef a/. (2025) recently intro-

duced a two-dimensional chromatography method that simultaneously assesses encapsulation efficiency

(~65-70%), nucleic acid integrity, LNP size and impurities
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enabling detection of empty particles and aggregates in heterogeneous samples simultaneously but re-

quires standardization.(Pavlin et al., 2025) The physicochemical and structural complexities, as well as

the lack of a reference standard (a certified material for calibration) for LNP formulations (Simon et al.

2023) raise critical questions about their zz vivo behavior. Section 2 will expand on this foundation to
examine how these properties affect biodistribution, uptake, endosomal escape, therapeutic effective-

ness, and potential toxicities.

Section 2 - Biological Interaction and Pharmacodynamic Uncertainties of LNPs

Key Terms in modRNA-LNP Vaccines: Biodistribution, Transfection, and Gene Expression

1. Biodistribution: physical location of a drug, tracer, or intact LNP within a biological system.
a. depends on circulation, the protein corona, vascular permeability, and reticular
endothelial system (RES) uptake
b. does not indicate cell entry
2. Transfection: process of delivering nucleic acids, such as modRNA, into eukaryotic cells using
nonviral methods.
a. Requires cellular uptake and endosomal release
3. Gene expression or Protein Production
a. Translation of mMRNA into target protein (ie spike protein)
b. Depends on intact mRNA, active ribosomes, and protection from degradation
Critical Note.
e Biodistribution, transfection and gene expression are time-dependent and distinct processes
e Many studies conflate LNP biodistribution with transfection or gene expression leading to
inaccurate assumptions
e Preclinical trials or regulatory submissions often lack transfection and gene expression data,
limiting understanding of efficacy and adverse events

2.1 Overview

The in vivo journey of modRNA-LNPs from injection to protein translation depends on a variety of in-
terdependent processes. The physicochemical properties, influenced by LNP manufacturing and chem-
istry, impact the 7z vzvo response. This begins with the formation of a protein corona when the LNP in-
teracts with biological fluids. Cell uptake, target cell specificity, reliance on the protein corona, routes of
administration, and other factors are not fully captured by current biodistribution analysis methods. Ul-
timately, endosomal escape releases the modRNA for translation, and the lipids, modRNA, and newly
formed protein are cleared and degraded through various pathways. LNP-mediated delivery requires

entry into the target cell, traversal of biological barriers and release of modRNA into the cytosol (Fig.

2).
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241 Figure 3| y
242 LNP in vivo Journey from Injection to Site of Action LNPs injected into muscle rapidly drain into
243 lymph nodes and subsequently circulate in lymph and plasma (the LNP must remain stable in

244  circulation); 2 Acquires an individualized protein corona; 3 Transfects circulating immune cells; 4

245  Avoids phagocytosis 5 Leaves circulation via fenestrated epithelium or transcytosis 6. Random

246 transfection of individual cells and release of modRNA into cytosol 7 Exocytosis via extracellular

247  vesicles (EVs)/exosomes. Created in BioRender. by Seger, F. (2025)

248  https://BioRendetr.com/byxe75h

249
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2.1 Biodistribution of the LNP-modRNA vaccines

Accurately determining the biodistribution of LNPs, the modRNA, and the expressed protein remains
a challenge. This issue affects many studies on modRNA-LNP technologies. Fluorescence-based re-
porter assays are primarily used to track protein production or gene expression, but they do not directly
indicate LNP localization or transfection ability. Regulatory guidelines also recommend using quantita-
tive whole-body autoradiography (QWBA) to visualize and quantify intact LNP concentrations across

almost all tissues and organs simultaneously, enabling systematic comparisons among tissues. (Vervacke

ct al., 2022) Hybridization techniques, such as fluorescence in situ hybridization (FISH) for localization
and branched DNA (bDNA) amplification for quantification, are used to study mRNA distribution
throughout the body. Luciferase mRNA is a useful reporter for examining biodistribution and protein
expression. However, as regulatory authorities note, its short half-life and lack of modifications mean it
may not accurately reflect the longer and more sustained protein production typical of modified

mRNAs. (EMEA/H/C/005735/RR, 2020) Therefore, conclusions based solely on luciferase mRNA-

LNPs may underestimate the actual performance of the modRNA product. These points highlight the
complexity of evaluating the biodistribution of modRNA-LNP therapies and emphasize the im-

portance of a layered, comprehensive approach.(Vervacke et al., 2022)

No biodistribution studies using the actual modRNA from the Pfizer/BioNTech or Moderna vaccine
were included in the regulatory documents. As a result, there was no assessment of transfection effi-
ciency or gene expression levels. Further clarification from regulatory authorities and manufacturers is
needed to determine the necessary chemical, pharmacological, and toxicological studies for these lipids

to obtain approval. (Hemmrich & McNeil, 2023)

Ci et al.(Ci et al., 2023) performed one of the few LNP-modRNA biodistribution studies, where the

methodology showed strong differentiation of the sequential process of LNP activity based on current

technical capabilities. Quantification of the ionizable lipid and its metabolites was accomplished using
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LC-MS/MS. ModRNA quantification employed bDNA, and detection of the non-translating Factor IX
(NTFIX), a model protein, was analyzed using LC-MS/MS. This multi-faceted analytical approach, pet-
formed in mice, allowed for a clear distinction between LNP distribution, modRNA delivery, and
downstream protein production. The authors demonstrated both LNP distribution and subsequent
protein expression across a wide range of tissues. Protein production was quickly detected in the liver,
ovary, and thymus, followed by the uterus and kidneys. As expected, the liver produced the most pro-
tein overall, followed by the ovaries, kidneys, and lungs. Protein production persisted at low levels up to
168 hours in the lungs, heart, liver, gastrointestinal tract, kidneys, and uterus, but not in the ovaries;
however, no further measurements were obtained. Notably, protein expression was observed in the
heart despite little to no corresponding mRNA at later time points, emphasizing the importance of an-
alyzing both mRNA and protein production separately over time to understand the therapeutic effects.
These results may indicate that macrophages or dendritic cells traffic to the heart; however, generaliza-
bility to humans is unknown. The ionizable lipid and its metabolites were concentrated in the urinary

and digestive tracts, suggestive of hepatobiliary and urinary clearance. The ethanolamine portion of the

ionizable lipid, radiolabeled with'*C, showed no metabolism in vivo,(Burdette et al., 2023) indicating

tissue persistence.

Luo et al. (Luo et al., 2025) recently introduced Single Cell Precision Nanocarrier Identification (SCP-

Nano), a novel imaging and deep learning pipeline for single-cell resolution mapping fluorescence-la-
belled carriers such as LNPs across whole mouse bodies at doses as low as 0.0005 mg/kg, which are
typical for modRNA vaccines and are 100-1000 times lower than conventional imaging methods, such
as QWBA. Using reporter mRNA (e.g. EGFR), the study demonstrated heterogeneous nanocarrier up-
take and protein expression both within and across organs, with hotspots in the liver and spleen. This
punctuated pattern indicated that some cells successfully translated the mRNA, while neighboring cells
exhibited uptake without expression. Intramuscular injection of LNPs with SARS-CoV-2 spike mo-
dRNA revealed low-level heart endothelial delivery, confirming possible molecular and proteomic
changes beyond primary targets. These results in rodent models may not directly apply to humans. Still,
this may have important implications for potential off-target effects that standard diagnostic methods,
such as ultrasound or CT scans, might miss. Cellular or molecular changes could contribute to symp-
toms or disease risk, but may not be visible until they become extensive enough to be detected by con-

ventional tools.
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The route of administration also influences the biodistribution of LNP-modRNA therapy. For intra-
muscular administration, such as that for the modRNA COVID-19 vaccines, syringe pressure, perfu-
sion rate, proximity to blood vessels and lymphatic vessels, local pH, and temperature, among others,

are important considerations. (Naasani, 2022) In contrast, other LNP-nucleic acid therapies, such as the

siRNA product patisiran (Onpattro®), are administered through intravenous infusion, which achieves
liver targeting almost exclusively through ApoE binding and LDL receptor uptake. Subcutaneous and

intranasal routes favour lymph nodes and lungs, respectively.(Mendonca et al., 2023) These differences

demonstrate that the biodistribution of LNPs differs significantly based on the route of administration,

making them distinct from traditional small-molecule therapeutics.

2.3 Formation and Biological Role of the Protein Corona

When LNPs encounter biological fluids, they are immediately transformed by their environment. They
acquire a dynamic and heterogeneous coating of biomolecules known as the protein corona. This layer
fundamentally changes how the body perceives and processes the LNPs, influencing biodistribution,
immune recognition, cellular uptake, and ultimately the efficiency of modRNA translation. Therefore,

the protein corona gives the LNPs a “biological identity”. (Akhter et al., 2021)

The protein corona formation occurs within minutes through van der Waals forces, hydrophobic inter-
actions, electrostatic interactions, and other biochemical and biophysical interactions, resulting in an

individual, heterogeneous 7 vivo LNP pool.(Cedervall et al., 2007) For the modRNA-LNPs, this pro-

cess is accelerated because the PEG-lipids on the surface of the modRNA-LNPs dissociate and ex-

change with plasma proteins, a mechanism known as PEG-lipid shedding. (Escalona-Rayo et al., 2024)

It is a dynamic, complex, and unpredictable process that is crucial for biodistribution, transfection, and

cellular responses, since this is what the cell itself “sees.”(Walczvk et al., 2010)
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Hard Corona

Forms in seconds to
minutes
High-affinity proteins
Strongly bound to
nanoparticle surface
Direct protein-
nanoparticle contact
Low dissociation

Soft Corona

Forms after several
hours

o Low-affinity proteins
o Loosely and weakly

bound

Mainly protein-protein
interactions

High dissociation

Composition and Determinants of
the Biocorona

Composition

e Lipoproteins, immunoglobulins,
albumin, complement, etc

e Species-specific, impact on animal
models for toxicity studies

Influencing Factors

e Physicochemical properties (size,
shape PEG-lipid density, shedding
rate

e Environmental factors;
temperature, pH, incubation time,
biological fluid (plasma, lymph),
age, gender, comorbidities

Human biocorona characterization

e Not fully characterized

e NP size and density resemble
natural serum lipoproteins

e Voke ¢f a/ found consistent
proteins, i.e. ApoE, C-reactive
protein, alpha-2 macroglobulin,
vitronectin

Dynamic Remodelling

e Biocorona changes as the LNP
moves through biological fluids,
hard and soft corona

e Complicates LNP behaviour
prediction
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The biocorona can alter the internal structure of the LNPs.

The protein corona can potentially mask targeting ligands or alter interactions with cell membranes.
This can reduce the efficacy of targeted delivery by shielding functional moieties or, in some cases, en-

hance functionality by presenting a new protein-based signal.(Voke et al., 2025)

One of the most critical aspects of the protein corona was demonstrated by Sebastiani e a/.(Sebastiani

et al., 2021) When ApoE binds to the protein corona of LNPs, the entire biodistribution pattern of the

original formulation is altered by internal structural changes, potentially affecting modRNA
encapsulation, agglomeration and premature RNA release. Accordingly, the entire surface structure
changes, facilitating the opsonization of phagocytes, such as macrophages and dendritic cells. Further
work also emphasized the importance of the protein corona for not only biodistribution but also
transfection efficiency and translation yield. (da Costa Marques et al., 2023; Huang et al., 2023; K. Liu et

al., 2023; Sengottivan et al., 2023)

The immunological effects of the biocorona in plasma

The accelerated blood clearance (ABC) phenomenon, often triggered by repeated administration of
PEGylated LNPs, results from the production of anti-PEG antibodies. These antibodies can quickly
clear subsequent doses of PEGylated LNPs from the bloodstream through accelerated blood clearance,
reducing therapeutic effectiveness but also potentially increasing the risk of adverse reactions due to the

rapid and unpredictable distribution of the nanoparticles.(Wang et al., 2024) PEGylated nanoparticles

are known to interact with circulating complement proteins, activating the complement cascade and

producing opsonins and anaphylatoxins, which are associated with acute infusion reactions in patients,

known as complement activation-related pseudoallergy (CARPA).(Szebeni et al., 2018) Anaphylactic
and allergic reactions observed after modRNA COVID-19 vaccination may partly reflect this phenom-

enon.(Bakos et al.. 2024)




366 Implications and Challenges
367

368  Since processing and administration into a living organism involve many interfering factors, it seems
369 plausible that the biocorona causes a nonlinear distribution route depending on the formulation of the
370 LNPs, the biological environment, and the route of administration. Overall, these data challenge the
371 idea of a uniform LNP formulation and predictable biodistribution. One might assume that if these
372 factors heavily influence biodistribution, administering the same dose to two subjects is unlikely to
373  result in similar responses. Recent approaches to addressing the inherent issues with the biocorona of
374  LNPs have utilized liposomal LNP-modRNA nanoparticles, which exhibit extra-hepatic targeting and
375  longer circulation lifetimes, likely due to the formation of fewer proteins in the protein corona.(M. H.

376 Y. Cheng ctal., 2025) This represents a return to the original nanosized lipid patticles, liposomes.

377
378 2.4 Target Sites and Tissues
379

380 What are the main sites and tissues targeted by the LNPs? The primary target sites for the LNPs

381 include the liver, spleen, and draining lymph nodes, as these organs comprise a significant portion of
382  the Reticuloendothelial System (RES), a component of the immune system that involves phagocytes,
383  such as macrophages and monocytes. These cells are primarily located on the vascular wall of the liver

384  (Kupffer cells), spleen (splenic macrophages), kidneys (mesangial cells), and lungs (lung

385  macrophages).(Ngo et al., 2022) Given the dynamic nature of the biocorona and the common presence
386  of ApoE init, it is not surprising that hepatocytes in the liver are the primary target for the

387 LNPs.(Hosscini-KKharat M, 2025) Additionally, because the liver functions as a biological filter system,

388  LNPs that are up to 200 nm in size tend to undergo fenestration unless specifically engineered

389  otherwise, which helps their uptake into liver sinusoidal endothelial cells (LSECs).(He et al., 2024) Since

390 LNDPs first enter through the sinusoidal lumen, Kupffer cells are also the initial targets for

391 transfection.(Hosseini-IKKharat M, 2025)

392
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Similarly, LNPs tend to distribute to the spleen due to its sinusoidal endothelium, which facilitates LNP
uptake. Depending on the LNP formulation and composition, macrophages and dendritic cells can be
targeted, which is essential for the efficacy of modRNA-LNP vaccines.(Haghighi et al., 2024) Based on

the proportions, shape, charge, and other factors of the LNP lipid, gene expression or protein

production can sometimes exceed levels in the liver.(Hald Albertsen et al., 2022)

Draining lymph nodes are a common target for LNPs. The size of their fenestrations (<200nm)

allows the LNPs to migrate through lymphatic channels and be taken up by antigen-presenting cells

(APCs).(Hassett et al., 2024) Various modifications, especially surface engineering of the LNPs and

other adjustments, improve targeting and retention. Depending on their size and other factors, LNPs
can also drain directly into lymph nodes. Additionally, larger particles are transported by APCs (mainly
dendritic cells) to different locations, such as the heart, which has been suggested to explain immune

reactivity and responses.(Milano et al., 2021)

In addition, other organs may exhibit detectable LNP presence in preclinical studies, sometimes
referred to as “off-target effects,” which are caused by the physicochemical properties of the LNPs and
the resulting protein corona. The heart, lungs, adrenal glands, and ovaries are frequently reported in

studies involving rodents and non-human primates (NHP).(TherapeuticGoodsAdministration, 2021)

Transcytosis or direct penetration can occur, allowing LNPs to bypass blood-organ barriers. This is

important because LNPs can leave the vasculature and cross the blood-brain barrier (KKhare et al., 2023)

or the intestinal barrier.(Neves et al., 2016) Zhang ez al. (Zhang et al., 2024) in a comprehensive review

list various target cells, such as epithelial, basal, and endothelial cells, and explain how these are
particularly likely to be targeted. Other notable examples include cardiac and skeletal muscle, bone
marrow-derived dendritic cells and macrophages, as well as various cell types and tissues. (J. Chen et al.,
2023; Dey et al., 2021; Han et al., 2021; Khare et al., 2023; Swingle et al., 2023; Younis et al., 2023; Zak
et al., 2023)
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Regulatory Gap

In official FDA and EMA documents, the “target cells” believed to be transfected by the LNPs are not
specified. Notably, the US FDA mentions transfection(USFDA, 2020) Conversely, the EMA states that

the viral protein antigen is expressed in the desired conformation(EuopeanMedicinesAgency, 2021) It is

unclear whether both agencies refer to the same process or if the EMA distinguishes between
transfection and protein expression, as previously discussed. This lack of clear communication and
precise data presentation regarding the modRNA-LNP target cells and delivery, combined with support

from public health agencies, (CentresforDisecaseControlandPrevention, 2022) has contributed to the

common belief that the vaccine is limited to the deltoid muscle. These misconceptions, have led to a
limited understanding of the vaccine’s potential for broader use and distribution, leaving safety profiling

incomplete.

2. 5 Cellular Uptake Mechanism

As we have seen, the adsorption of biomolecules onto the LNP surface establishes a dynamic
biocorona overriding the synthetic nanoparticle design. This identity governs cellular interactions by
dictating which membrane receptors are engaged, leading not only to biodistribution patterns but also
to endocytic pathways and, consequently, the intracellular fate of the encapsulated modRNA. This
membrane uptake into cells is termed endocytosis. The efficiency of uptake is profoundly affected by

the biocorona, particle size, shape, and net surface charge.(Hald Albertsen et al., 2022)

Transfection occurs when the LNPs are endocytosed and the modRNA subsequently escapes the

endosome into the cytosol (Figure 5).
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Figure 5. Schematic representation of nanoparticle cellular internalization pathways, including
clathrin-mediated, caveolin-mediated, clathrin- and caveolin-independent, phagocytosis, and
macropinocytosis. Adapted from Augustine R, Hasan A, Primavera R, et al. Materials Today Com-
munications (2020) 25:101692. https://doi.org/10.1016/j.mtcomm.2020.101692. Licensed under CC
BY 4.0 (https://creativecommons.org/licenses/by/4.0/).

Mechanisms of Uptake

There is little focus on how LNPs penetrate the cell membrane, or which receptors and ligands are

most likely to interact with LNPs for uptake into cells or endocytosis. In 2008, Lonez et al (Lonez et al.

2008) stated that it was unclear whether receptor-dependent or receptor-independent “endocytosis-
like” uptake of liposomes into cells was involved. A reassessment by the same authors in 2012 (Lonez
ct al., 2012) noted that the exact nature of the endocytic vesicles involved in endocytosis or
“endocytosis-like” uptake of LNPs was still “a matter of debate.” Whether a receptor- or receptor-

independent “endocytosis-like” process occurs strongly depends on the protein corona and the state of

the cell encountered by the LNP and the local microenvironment(Behzadi et al., 2017) (pH, bradykinin,

prostaglandins, etc). Paunovska ef a/. (Paunovska et al., 2022) reported that LNPs can bind to

apolipoprotein E and low-density lipoprotein receptors (LDL-R), whereas Chaudhary et al(Chaudhary
ct al., 2024)
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reported that Toll-like receptor (TLR)4 and CD1d can be internalized with the endosome. Both

receptor-mediated and receptor-independent cellular uptake(Akhter et al., 2021) likely occur

simultaneously within the same cell. Uptake may also occur under specific conditions without direct
binding to membrane components; instead, nonspecific hydrophobic or electrostatic interactions

ultimately initiate the process. (see Table 2)

Measuring how cell receptors bind is challenging.

The current methods used to study the mechanisms by which LNPs interact with the cell membrane
often disrupt the natural protein corona composition, making it challenging to identify which cell
receptors recognize and bind to LNPs accurately. Identification of the corona proteins is not sufficient
because not every protein in the corona can interact with cell receptors, as they may require correct
orientation on the nanoparticle surface. Therefore, identifying which epitopes on the biomolecular
corona are accessible to cell receptors is essential for determining potential interactions. Likewise, not
all exposed proteins can necessarily bind to receptors, especially if there is competition with other
proteins with higher affinity for the same receptors. It is, therefore, important to identify which

proteins genuinely participate in these interactions.(Alivandi et al., 2020)

Lipid—membrane interactions can also influence cell membrane receptor activity and thereby contribute

to the uptake of lipid nanoparticles (LNPs). As summarized by Lavington & Watts,(Lavington & Watts,

2020) nanodisc and SMA lipid nanoparticle (SMALP) studies demonstrated that specific lipid compo-
nents (such as helper lipids) modulate the surrounding membrane environment without directly binding
to G-protein coupled receptors (GPCR). Such lipid-induced alterations affect GPCR conformation, lig-
and binding, and signal transduction, supporting functional receptor interactions. The elements of the

protein corona, uptake pathways and primary tissues affected are reviewed in Table 2.
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Table 2 Biocorona, Receptors and Mechanisms of Uptake

avB3=integrin alpha-v beta-3; a5@1=alpha-5 beta-1; ABC = accelerated blood clearance; APC = anti-
gen-presenting cells; ApoE = apolipoprotein E. Clq=complement Clq component; CSF2RB=colony
stimulating factor 2 receptor beta; CR3b=complement receptor 3; FcyR= Fc gamma receptor;
FcaR=Fc alpha receptor; GPCR=G-protein-coupled receptor; LDL-R=low-density lipoprotein recep-
tor; LRP-1=low-density lipoprotein receptor protein-1; PEG=polyethylene glycol; SR-B1=scavenger
receptor class B Type 1; TLR4=toll-like receptor 4.

*QOpsonins (e.g. CRP, IgGs, complement) act in the vasculature, whereas integrins and others, mediate
uptake at the cell membrane.

The main challenge isn't whether transfection occurred, but how much happens and how conditions in

systems biology influence this process. According to current knowledge, organ fenestrations and the

pKa value mainly determine biodistribution and cellular uptake. The {-potential primarily affects
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protein corona formation and the likelihood of its formation. (Patel et al., 2021),(Cedervall et al., 2007)

Given the numerous mechanisms, cell receptors, and a wide range of cell types, along with cells at
different stages of maturation and division within the same lineage, it is not surprising that efforts to
systematically target receptor-driven signalling pathways within a highly complex biological system are

inherently problematic.

Interestingly, Zelkoski ez a/(Zelkoski et al., 2025) demonstrated in THP-1 cells that ionizable LNPs can
activate both TLR4 signalling pathways, the TIRAP/MyD88-NFxB pathway and the
T2025RAM/TRIF-IRF pathway, albeit with differences in magnitude and kinetics: NF-»B signalling
was rapid and robust, while IRF activation was weaker and delayed. This observation supports the
concept that ionizable LNPs, by altering lipid raft dynamics, can induce overlapping but temporally
shifted TLR4 signaling responses, diverging from the canonical temporal segregation of these

pathways(IKim et al., 2023)(Table 2).

2.6 Endosomal Escape as Key Bottleneck

Transfection, as previously discussed, occurs in a receptor-dependent and/or receptor-independent
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manner, indicating a bioactive behaviour that extends beyond the traditional pharmacokinetic
approach. Transfection is completed when the modRNA escapes the endosome. Assessing how LNPs
are metabolized from a traditional pharmacokinetic perspective is challenging because they are not

degraded through organ uptake during cell transfection. Instead, endosomal escape and degradation

define the entire spectrum of pharmacodynamics.(Ait-Oudhia et al., 2014; He et al., 2019) The classic
absorption, distribution, metabolism, and excretion (ADME) pharmacokinetic model does not apply to

liposomal or nanoparticle delivery systems.

The Endosomal Escape Mechanism is Based on Biophysical and Chemical Processes

Endosomes consist of a lipid bilayer similar to the cell membrane, which prevents nucleic acid escape
as an evolutionary defense against foreign viral RNA entering the cell. For LNPs carrying modRNA,
successful endosomal escape is essential for therapeutic action. After endocytosis, the endosomes
increase the acid gradient, which protonates the ionizable lipids within the LNPs. For example, ALC-
0315 has an apparent pKa value of ~6.09, and SM-102 has a value of ~6.6. This protonation event
triggers the rearrangement of lipid molecules into a lamellar phase within the endosomes, promoting
membrane destabilization and releasing the payload into the cytosol, a process known as the proton-

driven osmotic swelling or the proton sponge effect.(Lell et al., 2025) (Chatterjee et al., 2024) As the

pressure rises, the membrane destabilizes and may rupture, releasing its contents into the cytosol.
Endosomal damage, as indicated by galectin recruitment, can occur solely from the presence of

ionizable lipids and does not require cystolic delivery of the RNA molecule. (Johansson et al., 2025)

Lipid geometry facilitates this process. The conical shape of the branched, unsaturated fatty acid chains

promotes negative curvature stress within the membrane, increasing destabilization (Petersen et al.
2024) Computational free energy calculations have shown that both ALC-0315 and SM-102 insert into

the cell membrane favourably,(Eirmilova & Swenson, 2023) suggesting that ionizable lipids in the

current LNP-modRNA vaccines embed into the lipid bilayer. Even transient tearing may contribute to

escape. Such tearing has been demonstrated with other nanoparticles.(Er-Rafik et al., 2022). Most

recently, LNPs were found tethered to the endosomal membrane and associated with membrane

destabilization.(Johansson et al., 2025) Finally, Pilkington et al (Pilkington et al., 2021) suggest that

LNPs may perturb lipid raft organization, implying that endosomal escape involves not only
endocytosis but also broader effects on membrane dynamics. Figure 5 shows the typical intracellular

journey of a modRNA-LNP.



Figure 6: Endosomal Escape

a The modRNA is introduced
into the eatly endosome after
being taken up via clathrin-me-
diated endocytosis or LDLR as
example internalization, which
is governed by the biocorona
and lipid raft interactions. b The
early endosome and protona-
tion of the ionisable lipids. ¢
The disruption of the early en-
dosome and the release of mo-
dRNA, impurities, and mo-
dRNA-lipid adducts. d Mean-
while, a portion of engulfed
LNPs are recycled back into the
extracellular space as EVs or ex-
osomes. ¢ Another fraction pro-
gresses into late endosomes and
eventually into lysosomes,
where they are degraded. f En-
dosomal maturation from early
to late stages determines the
fate of the cargo: either delivery
to the lysosome (e) or secretion
via exosomes, unless the endo-
some is disrupted (f). Created
in BioRender. Seger, F.
(2025)
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Endosomal Escape is Inefficient

Only within a narrow window of opportunity do conditions allow LNPs to escape through endosomal
fusion during the endosomal maturation process.(Chatterjee et al., 2024) (Mdller et al., 2024) (Hald

Albertsen et al., 2022)

This window is brief, lasting about 5-15 minutes(Schlich et al., 2021) when conditions in the endosome

enable the LNPs to fuse with the endosomal membrane and deliver their cargo into the cytosol.

Beyond this period, escape efficiency drops significantly.

This process is highly inefficient, with only about 1-15% of all internalized LNPs resulting in the

production of the target protein.(Sabnis et al., 2018) (Aliakbarinodehi et al., 2024; Chatterjee et al.,

2024y (Miller et al., 2024) LNPs that do not escape the endosome at this stage are degraded or

exocytosed.(Maugeri et al., 2019) Degradation through lysosomal fusion enriches the endosome with

degradative contents and enzymes, moving endosomes toward the plasma membrane and enabling

fusion for exocytosis. Most LNPs follow these pathways and fail to deliver mRNA to the cytosol, since

endosomal escape is the main “bottleneck” of mRNA therapeutics.(Chatterjee et al., 2024). Over the
past four decades, numerous methods have been attempted to improve delivery. However, significant
improvements in endosomal escape often come at the cost of increased cytotoxicity, such as

endosomal bursting and release of entire contents into the cytosol.(Dowdy et al., 2022)

Failure to Escape the Endosomes Results in Cellular Stress

After endocytosis, if the modRINA is not released into the cytoplasm, the endosomes mature into late

endosomes and then fuse with lysosomes.(Chatterjee et al., 2024) Lysosomes contain various enzymes

such as lipases, proteases, nucleases, and glycosidases that dismantle both the modRNA and lipids. An
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accumulation of undegraded materials from the LNPs can trigger cellular stress, oxidative stress, and
potential inflammatory signalling. This accumulation has been compared to aspects of lysosomal

storage disorders,(Paramasivam et al., 2021)though a direct link to human disease has not been

established.

Lysosomal retention blocks expected degradation and recycling processes in the cell, including
receptor recycling such as LDI-R. This can create a cellular “traffic jam” that impairs the uptake of

new ligands and receptors.(Y. Cheng et al., 2025) Although the lipids comprising the LNPs are

considered biodegradable, high local concentrations can impair lysosomal function, slow degradation,

and prolong the retention of the disassembled lipids.(Sahav et al., 2013) Consequently, a blockade or

arrest of normal endosomal maturation and acidification not only reduces therapeutic efficacy but can

also lead to toxicological effects.(Paramasivam et al., 2021)

LNPs May be Expelled Intact or Partially Degraded in Exosomes

Not all LNPs successfully escape the endosomes or are degraded in lysosomes. A significant portion is
recycled back into the extracellular space, repackaged in extracellular vesicles (EVs) or exosomes. This
pathway enables cells to eliminate undigested LNPs or those that fail to escape the

endosomal/lysosomal pathway. Maugeri (Maugeri et al., 2019) showed that LNPs in recycling

endosomes are expelled either intact or partially degraded, which affects transfection efficiency.
Exocytosis serves as both a clearance route and a secondary distribution mechanism; vesicle-mediated
transport may transfer the modRNA or lipid fragments to the surrounding microenvironment in a

paracrine manner.(Sahin et al., 2014)
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These EVs can also transfect cells, influencing pharmacodynamic outcomes and contributing to
variability and off-target effects. In fact, natural exosomes are being engineered for RNA delivery

(Igbal et al., 2024) (Bost et al., 2021) because they can cross physiological barriers effectively, have

improved biocompatibility, low toxicity, cell-specific tropism, and can evade the mononuclear

phagocytic system. (Wu et al., 2021) This recycling of endosomes, as well as empty LNPs or those with

blebs, may cause cellular stress, oxidative damage, and chronic inflammation,(Y. Cheng et al., 2025)
which could be linked to adverse effects such as injection-site reactions or immune activation. These
factors are not considered in biodistribution studies and may contribute to cumulative toxicity,
especially with repeated doses. Long-term studies are needed to determine if these adverse events are
causally related, as current regulatory focus is on immediate effects and may overlook these delayed
responses.Endosomal escape of siRNA-loaded LNPs, such as those for Onpattro, is minimal, typically

around 1%, (Akinc et al., 2019; Dowdy, 2023) which restricts cytosolic delivery and helps minimize

cytotoxicity. This low efficiency means that only a small subset of internalized siRNA particles reaches

the cytosol. The escape events themselves tend to produce small, transient membrane disruptions that

are readily repaired by the cell.(Bates et al., 2025; Johansson et al., 2025) As a result, siRNA-mediated
delivery elicits slower and weaker cytotoxic effects compared to delivery systems that induce more

extensive endosomal damage.
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Endosomal Escape Key Barriers and Open Questions

Endosomal escape is the critical bottleneck for modRNA-LNP therapeutics. Only 1-15% of inter-
nalized particles successfully release mRNA into the cytosol

Main Barriers

pH gradient. Protonationof ionizable lipids destabilized the endosomal membrane, but the
window is narrow (5-15 min)

Lipid geometry. Branched or conical tails of the ionizable lipid promote curvature stress,
but also raises toxicity

Particle size and number per cell; too few results in low transfection, too many may lead
to lysosomal stress and degradation

Cell type: Hepatocytes and dendritic cells favour endosomal escape, quiescent or special-
ized cells like neurons or fibroblasts are less permissive

Unresolved Questions

Is protein production driven by a few highly productive escape events, or many inefficient
How do free ionizable lipids behave once released? (pKa shifts, ROS generation, immune
activation, reactive aldehydes)?

What happens to the modRNA immediately after escape (the ‘dark hour of transfection”)
before translation begins?

Do failed events contribute to chronic inflammation or lipid accumulation with repeated
dosing

How much variability is stochastic (intrinsic) vs cell type dependent and thus controllable?

Implication: Escape is both inefficient, unpredictable and context-dependent, leading to high vari-
ability in transfection and protein expression. Strategies to promote endosomal escape often in-
crease cytotoxicity, resulting in the need for a better mechanistic understanding and safer lipid de-

sign

630




631

632

633
634
635
636
637
638
639
640
641
642
643
644
645
646

647
648
649

650
651
652
653
654
655

656

Single cell Analysis: a pharmacokinetic perspective

The pharmacokinetics of LNP delivery and protein expression are a complex, multi-step stochastic pro-
cess involving uptake, endosomal processing, and mRNA escape. Using single-cell analysis, Miiller e /.

(Miiller et al., 2024) found that cellular uptake was variable and ranged from minutes to hours depend-

ing on LNP shape, composition, and cell type. Endosomal escape varied among individual cells and
was inversely related to protein production; faster release and translation of RNA led to increased pro-
tein output. A theoretical “area under the curve” (AUC), used to describe overall pharmaceutical pro-
tein availability, was found to depend equally on four factors: the number of mRNA molecules deliv-
ered, the translation rate, the mRNA lifetime, and the protein lifetime. Moreover, Miiller ¢# /. noted
that little is known about the fate of nucleic acids after they escape from the endosome. Before any
measurable action, such as protein expression occurs, there is what Miller calls “the dark hour of trans-
fection,” the intracellular biochemical and physical processes that occurs following endosomal escape
but before protein synthesis. What happens during this period remains unclear, which limits a full un-
derstanding. Additionally, the amount of modRNA released into the cytosol does not reliably predict

the level of protein expression, previously noted by Liu ef a/. (Liu et al., 2024)

2.7 Lipid Degradation and Metabolite Persistence

Once the modRNA is released, the fate of the lipid components determines the final pharmacodynamic
stage of LNP activity. This aspect, concerning the fate of the individual lipids after they deliver their
payload, is rarely discussed or addressed. The LNPs do not simply vanish; instead, they are disassem-
bled 7 vitro, metabolized, and cleared at different rates depending on the lipid chemistry. For example,
cholesterol may form oxysterols with immune effects, while DSPC can accumulate in organs, poten-

tially altering membrane fluidity.
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Both cholesterol and DSPC are natural lipids, but they are manufactured synthetically. Clearance path-

ways remain pootly characterized, necessitating further study. These are further delineated in Table 4.

PEGylated Lipids

The pegylated lipid plays a key role in the lipid matrix of the LNP, despite its small molar ratio, because
it extends outward on its surface, which is necessary for LNP stability during formulation and stor-

age.(Zhang et al., 2025) This also allows for increased 7 vivo circulation time since the PEG lipid im-

pedes cellular uptake and endosomal escape, but this then creates the so-called “PEG dilemma.” As a
result, PEG-lipids with shorter C-14 acyl chains were used in the LNPs, which gradually diffused out of
the particles and provided temporary stealth properties, achieving higher transfection efficiency than

longer, more persistent PEG-lipids.(Mukai et al., 2022) Once the PEG-lipid is sloughed off, it is metab-

olized by the liver and kidneys, where the lipid component undergoes enzymatic hydrolysis and 3-oxi-
dation which is standard processes for lipids. The pegylated part, being a polymer of ethylene glycol, is
either excreted in urine or broken down into smaller oligomers. Although PEG-lipids are designed to
quickly detach from the LNP surface once in circulation or shortly after uptake, they can remain associ-
ated. Then they can be internalized with the particle and undergo endosomal trafficking to lysosomes,
where the lipid portion is degraded and the PEG chains are either excreted or slowly metabolized. (Mui
et al., 2013)

b dley &1

Ionizable Lipid

No clinical data exist for ALC-0315 and SM-102 regarding their retention and duration of activity in
humans. Although they are labeled as "biodegradable" after their ester bonds are hydrolyzed within tis-
sues and release their fatty acid tails, their overall ability to degrade doesn't truly improve, since com-

mon degradation pathways like 3-oxidation are not consistently used. (Jorgensen et al., 2023)
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Due to their sterically hindered ester structure, they are slowly hydrolyzed over several days. J6rgensen
et al. highlight that these lipids usually have stable structures and multiple tertiary amines, which slow

down their degradation and may cause toxicity. (Jorgensen et al., 2023) When ALC-0315 undergoes es-

ter cleavage, it forms a doubly de-esterified metabolite that remains cationic and can reach metabolic

sites such as mitochondrial membranes more quickly than longer lipids,(Evgeris et al., 2022; [6rgensen

ct al., 2023)possibly leading to ROS production, cytokine release and membrane disruption. As a result,

the persistence of these shorter-chain lipids could lead to ongoing toxicity after exposure, (Hou et al.

2021; Indcio A et al., 2011) but data in humans is sparse. Therefore, there is an urgent need to develop

new combinatorial reactions that can generate degradable ionizable lipids for potent RNA delivery.

(Han et al., 2021)

Lipid Adducts

An underrecognized risk for LNPs is the potential for lipid adduct formation, which occurs in storage.
The head groups of tertiary amine-based lipids can form N-oxides and, consequently, fatty aldehyde
impurities due to the thermodynamic instability of the LNPs and the oxidative impurities generated

during the complex processing of the ionizable lipid.(Birdsall et al., 2024; Zhichang Yang, 2023) These

aldehydes can react with modRNA nucleobases, especially adenine and cytidine, inside the LNP to

form covalent bonds (Figure 6e). Adduct levels increase with storage time and temperature, making

the modRNA untranslatable once injected. Moderna scientists(Packer et al., 2021) first reported adduct
formation in 2021, highlighting the lack of validated assays for detecting these adducts during manufac-

turing. Moderna also noted that the Tris buffer used in their product acts as an aldehyde sink,(Moderna

2022) enabling more extended storage at 2-8°C and reducing adduct formation with the modRNA.
Notably, Pfizer switched from PBS to Tris buffer in October 2021, raising questions about the amount

and reactivity of adducts in their early batches (Table 1).
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The damaged adducted modRNA, once taken up by the cell, may be perceived as abnormal or viral-like

by cellular sensors, which may trigger inflammatory signals or interferon responses.(Cordes et al., 2025;

Maelfait et al., 2020) Post-transcriptional interference, including adduct-induced damage, is

hypothesized to contribute to systemic immune dysregulation, ribosomal stalling and collision with

trailing ribosomes, and exaggerated inflammatory responses(Cordes et al., 2025), especially in

vulnerable individuals.(Acevedo-Whitehouse & Bruno, 2023; Rieby & Rehwinkel, 2015) Research on

secondary amines and reactive aldehydes (e.g., 4-HNE from lipid peroxidation) indicates they are
cytotoxic and may affect protein folding or function, leading to the formation of neoantigens that can
provoke undesired immune responses or contribute to oxidative stress and lysosomal dysfunction.

(Bitounis et al., 2024; Dalleau et al., 2013; Fritz & Petersen, 2013) However, direct iz vivo evidence of

adduct formation after LNP uptake has not been confirmed. Moderna is actively exploring strategies to
reduce covalent bonds and RNA-LNP adducts, acknowledging their potential toxicity.(Meredith Packer
et al., 2022) Similarly, DNA-LNP adducts could form with residual DNA in the vaccines, potentially

triggering interferon production.(Atianand & Fitzgerald, 2013) It is unclear whether BioNTech
considers these phenomena. Alternative ionizable lipids with piperidine heads have been developed to

mitigate this risk and enhance thermal stability. (Hashiba, Taguchi, Sakamoto, Otsu, Maeda, Ebe, et al.,

2024) However, the risks of adduct formation anticipated by developers have not yet been

systematically evaluated in vaccine studies.

The recent EMA draft guideline for modRNA vaccines (HuropeanMedicinesAgency, 2025) emphasizes

the control of adduct formation in manufacturing but does not delineate the possible adverse effects.
Continuous pharmacovigilance and advanced iz vivo assays are essential to clarify these uncertainties
vivo, particularly for vulnerable groups. The lipid components, metabolic pathway, and knowledge gaps

are summarized in Table 4.
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Lipid Ad-  Reactive Clearance uncer-  Persistent adducts, potential No standardized

ducts amines/alde- tain geoantigen formatior}, oxida-  7n vivo assays,
hydes cova- tive damage are possible frequency, and
See text legtly bind pro- tk.leir impact i
teins and nu- vivo are un-
cleic ac- known.
ids(Packer et al.
2021)

Table 4: Lipid Components, Metabolic Pathways and Knowledge Gaps HDIL=high density
lipoprotein; LDL=low density lipoprotein; PEG=pegylated lipid CARPA=complement activation

reaction pseudoallergy; ROS=reactive oxygen species

2.8 Drug Interactions

Although regulatory agencies generally assume vaccines do not cause drug—drug interactions, eatly evi-
dence suggests this may not hold for modRNA—LNP vaccines. Case reports and cohort analyses docu-
ment clinically relevant changes in clozapine pharmacokinetics post-vaccination, in some cases leading

to neutropenia and hospitalization (Bayraktar et al., 2021; Imai et al., 2022; Thompson et al., 2021). The

mechanism is consistent with inflammation-mediated suppression of CYP450 enzymes, particularly

CYP1A2 and CYP3A4, central to clozapine metabolism (Liermann et al., 1997).

While most effects appear mild or transient (Demler & O'Donnell, 2023), therapeutic drug monitoring

has been recommended for narrow-index drugs like clozapine (Veerman et al., 2022). Substantial
increases in escitalopram, fluoxetine, trazodone, and quetiapine levels have also been reported (IKuzin

et al., 2023), and a case of neuroleptic malignant syndrome with adrenal insufficiency occurred in a

patient on valproic acid (Mizuno et al., 2022).

This concern extends beyond psychotropic or antiepileptic medications. Inflammatory cytokines such

as IL-6, TNF-o, and interferon-y, induced by both infection and vaccination, down-regulate multiple

hepatic CYP isoenzymes (Lim et al., 2023). Clinical studies in COVID-19 patients have shown that
elevated C-reactive protein levels are associated with reduced metabolism of midazolam and tacrolimus,

potentially leading to oversedation or immunosuppressant toxicity.

Because many common drugs, such as statins, benzodiazepines, antiepileptics, and

immunosuppressants, are CYP3A4(Villemure et al., 2023) or CYP2C9 substrates(Lim et al., 2023),
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transient suppression of these pathways after vaccination could alter drug exposure in a clinically
significant way. Yet regulators do not currently require pharmacokinetic interaction studies for

vaccines, leaving these risks under-characterized, and clinicians may be unaware.

The possible pharmacodynamic interactions with lipid nanoparticles themselves may be overlooked.

Recent work has shown that small-molecule drugs can directly influence endosomal trafficking and

escape. Tricyclic cationic amphiphilic drugs (TCADs), such as tricyclic antidepressants, first-generation
antipsychotics, and certain antihistamines, share structural features with ionizable lipids and have been

repurposed in experimental systems to improve intracellular delivery of nucleic acids.(Debisschop et al.,

2024) In animal studies, nortriptyline-containing “CADosomes” demonstrated delivery efficiency

without the need for synthetic ionizable lipids,(Bogaert et al., 2022) suggesting a structural and

functional overlap between cationic amphiliphic drugs (CADs) and LNP excipients. While this may be
exploited experimentally to enhance delivery, it raises the question of whether patients already taking
CAD-class drugs (e.g., antipsychotics, some antidepressants, etc) may experience altered LNP

trafficking or immune responses following vaccination.
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Vaccine-Drug Interactions May Be Underreconized

Pharmacokinetic and pharmacodynamic interactions are not regularly evaluated during vaccine devel-
opment, as regulatory agencies generally assume there are no clinically significant drug—vaccine inter-
actions. (WorldHealthOrganization, 2005) However, rare case reports with influenza (Carnovale et
al., 2018) and COVID-19 modRNA-LNP vaccines challenges this assumption.

Case reportts of clozapine toxicity, (Lhompson et al., 2021), observations of altered serum levels of
antiepileptics,(Mizuno et al., 2022) and observational studies linking inflammation-induced cytokines
to CYP450 suppression(I. Liu et al., 2023) all suggest a potential for transient but clinically signifi-
cant interactions.

Additionally, lipid nanoparticles exhibit pharmacodynamic interactions, such as altered endosomal
trafficking, which can occur in patients taking psychotropic or other medications and remain largely
unexplored.

Overall, these gaps suggest that vaccine—drug interactions are both possible and clinically relevant,
but are currently underestimated due to existing regulatory frameworks.

Other drug classes have also been implicated in modifying endosomal escape. Proton pump inhibitors,
such as esomeprazole, have recently been investigated as adjuvants in preclinical LNP formulations, by
raising endosomal pH, enhancing LNP delivery and immune responses via lysosomal destabilization in

murine models.(Kim et al., 2025) PPI use has also been shown to increase risk of severe COVID-19

outcomes.(G.-I'. Li et al., 2021) For chronic PPI users, altered transfection efficiency could amplify

AEs, warranting caution and further research into vaccine safety profiles. These findings suggest that

the LNP itself functions as a cationic amphiphilic drug (CAD), and its toxicological profile may overlap

with that of CAD drugs (Gould & Templin, 2023). Endosomal escape enhancers, whether intentionally
incorporated into formulations or present coincidentally in patient medications, can increase cytosolic

release but also exacerbate lysosomal damage and galectin-mediated inflammation.(Dowdy, 2023;

Omo-lLamai et al., 2025)This dual potential to both enhance efficacy and intensify toxicity underscores

the need for pharmacovigilance analyses examining outcomes in patients on CADs, or other drugs at
the time of vaccination. Together, these observations argue that vaccine—drug interactions are not only
possible but clinically relevant, and their continued neglect in regulatory assessment represents a sub-

stantial oversight.
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796

797  The modRNA-LNP platforms are transformative technologies with significant clinical potential. How-
798  ever, several critical uncertainties remain. These challenges come from the complex physicochemical
799  properties of the technology and from broader translational and regulatory issues. As a result, there is
800 an ongoing need for sustained mechanistic research and transparent long-term studies.
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to protein corona-induced
lysosomal trafficking (Voke
et al., 2025)

Measurement remains chal-
lenging.(Francia et al., 2024)

al., 2024) complicates
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geting accuracy.



Endosomal
Escape

Persistence
and Lipid Me-

tabolism

Manufacturing

and stability

Drug Interac-

tions

Low efficiency (1-15%); high
stochastic cell-to-cell varia-
bility;(Johansson et al., 2025;
Paramasivam et al., 2021)
“dark hour” between escape
and gene expression is not
well understood. (Miiller et
al., 2024) Attempts to im-
prove endosomal escape
raise toxicity(Dowdy, 2023)

Escape remains nonlin-
ear, context-dependent,
with a bottleneck that
limits potency(Chatter-
jee et al., 2024; Johans-
son et al., 2025; Para-
masivam et al., 2021)

LNPDPs alter cell membranes
(Escalona-Rayo et al., 2024;
Schlich et al., 2021)

PEG-lipid immune ef-
fects,(Bakos et al., 2024),
possible lysosomal
stress,(Bitounis et al., 2024;
Paramasivam et al., 2021),
unknown toxic ionizable li-
pid metabolites,(Jorgensen et
al., 2023), and cholesterol
crystallization (Anindita et
al., 2024), DSPC membrane
effects

Documented batch hetero-
geneity;(HMA /707383 /,
2020 Corr.1*") instability in
plasma; (Zhang & Barz,
2025) post-injection remod-
eling’;(Y. Ren et al., 2025)
cold-chain and scale-up chal-
lenges.(Oude Blenke et al.,
2023)

Lipid adducts an unrecog-
nized concern

Case reportts of clozapine
toxicity(Thompson et al.,
2021) and altered antiepilep-
tic levels after vaccina-
tion;(Kow & Hasan, 2021)
CYP450 suppression during
inflammation is well estab-
lished.(Villemure et al., 2023)

Long-term safety of re-
peated dosing remains
unclear.

Effects of instability on
potency and safety re-
main uncertain.

The degree to which
modRNA-LNP vac-
cines transiently alter
drug metabolism
(CYP3A4, 2C9, 1A2) or
interact with lysosomo-
tropic drugs (e.g., psy-
chotropics) or other
drugs remains unknown

“Bottleneck” in-
creases unpredictabil-
ity of therapeutic ef-

ficacy.(Chatterjee et
al., 2024)

Non-linear and con-
text-dependent; bell-
shaped curve(Bates
et al., 2025)

= Gy SIS

Risks of chronic ac-
cumulation, inflam-
mation, or metabolic
disruption may be
possible; requires
further investigation
and focused studies

Variable potency, po-
tential side effects,
and administrative
challenges can com-
promise efficacy and
increase advetse
event risk.

Lipid adduct for-
mation may affect
therapeutic outcomes
and AE profile

Vaccine—drug inter-
actions are not sys-
tematically assessed,;
potential underrecog-
nized risk for pa-
tients on narrow
therapeutic index
drugs (clozapine, tac-
rolimus, midazolam).
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Regulatory
and Data Gaps

LNPs have adjuvant-like ac-
tivity, as acknowledged by
the FDA,(Peden, 2022) but
were classified as excipients
in regulatory submissions.

Pfizer/BioNTech’s Co-
mirnaty lacked transfection
and target-cell-specific data,
and CARPA was not as-
sessed.(EMA /707383/, 2020
Corr.1*"

The FDA did not evaluate
Moderna’s LNPs sepa-
rately.(Hemmrich & McNeil

New EMA guidelines on the
quality of modRNA vaccines
reinforce the classification of
excipients.(HuropeanMedi-
cinesAgency, 2025)

Current regulatory
framework does not
capture transfection and
nanoparticle-specific
risks; transparency and
public trust remain un-
resolved issues.

Drug interactions were
not assessed

Incomplete safety
evaluation, risks con-
fusion, and skepti-
cism.

Advanced methods,
including proteomics
(Boros et al., 2024;
EuropeanMedi-
cinesAgency, 2025)
and lipid profil-
ing,(USEFDA, 2022)
are needed to fully
characterize LNP—
modRNA formula-
tions and their phar-
macological and im-
munostimulatory
properties.

Secondary pharma-
cology, drug interac-
tions, assessment of
long term risks re-
quired for regulatory
assessment of LNDPs
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TABLE 5 Critical Uncertainties and Challenges of modRINA-LNP Technology

Considering the factors discussed, processing and administering into a living organism involves numer-
ous disruptive factors. As a result, neither biodistribution nor transfection follows a linear pattern, and

unpredictable variations in the measured values occur depending on the 7z »ivo model.

It also remains plausible that both a nonlinear distribution pathway and the transfection rate, dependent
on the formulation of the LNPs and the specific lipid components, may occur. From a pharmacoki-
netic perspective, the challenges associated with LNP technology, as identified in earlier research, have

not been fully addressed.

These concerns are not isolated technical issues but interconnected challenges. The physicochemical
heterogeneity and the dynamic structure of LNPs influence biodistribution, which in turn depends on
the dynamic protein corona; meanwhile, inefficiencies in endosomal escape exacerbate variability in
therapeutic outcomes. The toxicological dynamics of the extracellular LNPs are unstudied (Bitounis et

al., 2024), as 1s the possibility of lysosomal stress or dysfunction which is increasingly linked to numer-

ous diseases, such as neurodegenerative disorders.(Heng et al., 2024) Likewise, patient heterogeneity

amplifies these uncertainties, making it unreasonable to expect uniform efficacy or safety across popu-
lations and making it difficult to predict clinical response or an adverse event profile. Gaps in regulatory

requirements, such as critical quality attributes, target-cell specificity, biodistribution,(Vervacke et al.,

2022) immune effects, drug interactions, and long-term toxicology, further undermine public confi-

dence and complicate post-marketing safety and surveillance.

We assert that the interplay between protein corona composition, cellular uptake pathways, endosomal
escape and lipid metabolism critically influences cell tropism, protein production, and the stability of
both the lipid and RNA components. These aspects should be carefully considered and require further

investigation.



829
830
831
832

833

834
835
836
837

838
839

840

841
842
843
844
845

846

847
848
849
850
851
852
853
854
855

856

Given the dependencies shown, it is worth questioning whether parameters reliant on highly individual
physiological factors, such as age-related metabolic changes, pre-existing conditions, medications, base-
line protein levels, or temporal fluctuations in protein concentrations, can be effectively controlled or

standardized.(]. Li et al., 2021; Wegler et al., 2019)

Furthermore, these factors are inherently difficult to quantify and measure because they vary on an in-
dividual basis, and because z vitro measurements do not always reflect the 7z vivo behaviour of this tech-
nology. This raises fundamental challenges for the translation of LNP-based therapeutics into clinical

practice.

Discussion

Looking ahead, various strategies are being explored to address the unpredictability of current mo-
dRNA-LNP systems. One approach involves developing liposomal LNP hybrids, which may lower bi-

ocorona complexity and enable extra-hepatic targeting.(M. . Y. Cheng et al., 2025) Exosome-inspired

or engineered extracellular vesicles offer another promising avenue,(Igbal et al., 2024) leveraging their

natural ability to cross physiological barriers and evade immune clearance.(Maugeri et al., 2019)

On the chemistry front, new classes of ionizable lipids with improved degradation profiles are being

developed to reduce persistence and toxicity.(Han et al., 2021; J6rgensen et al., 2023; Omo-Lamai et al.,

2025) Simultaneously, advances in single-cell mapping technologies aim to clarify stochastic uptake and

expression at unprecedented resolution,(Bates et al., 2025; Johansson et al., 2025; Luo et al., 2025; Miil-

ler et al., 2024) potentially making delivery more predictable. Improvements in assay methodol-

ogy(Pavlin et al., 2025; Webb et al., 2025)and in formulations such as lyophilization(De & Ko, 2023)

look promising. Together, these innovations and others suggest that although current formulations re-
main a biological “black box,” an expanding toolkit is being developed to potentially make modRNA

delivery more controllable, targeted, and safer.
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These uncertainties highlight the nonlinear and context-dependent nature of LNP-modRNA interac-
tions, suggesting a pathogen-like effect on the cell beyond its inherent cytotoxicity. Insights from cati-
onic amphiphiles such as antipsychotic drugs may enhance the understanding of these complex parti-

cles.(Gould & Templin, 2023; Sfera et al., 2022)

Progress will likely require integrating advanced 7 vitro and 7n vivo models,(Bitounis et al., 2024) single-

cell resolution technologies,(lLuo et al., 2025) and standardized analytical frameworks(Simon et al.,

2023; UnitedStatesPharmacopeia, 2024) to achieve this goal.

However, it must be considered that zz vifro experiments with such a highly variable technology 2 vive
require a systems biology perspective. Neither membrane structural processes nor downstream signal

transduction(Thiemicke & Neuert, 2023; Vijay & Gujral, 2020)follow linear dynamics.

Additionally, incorporating longitudinal human data and comprehensive regulatory strategies will be
crucial to ensure both efficacy and long-term safety. This will be a challenging task given the nonlinear

dynamic nature of this technology.(Hung ct al., 2024)

Summary

To the best of our knowledge, this work is the first to systematically synthesize the current understand-
ing of LNP properties while highlighting unresolved challenges that have become increasingly evident

in recent years but remain insufficiently addressed in clinical applications.
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