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Abstract

In this narrative review, we assess the pathophysiology of severe adverse
events that presented after vaccination with DNA and mRNA vaccines against
COVID-19. The focus is on the perspective of an undersulfated and degraded gly-
cocalyx, considering its impact on immunomodulation, inflammatory responses,
coagulation and oxidative stress. The paper explores various factors that lead to
glutathione and inorganic sulfate depletion and their subsequent effect on gly-
cocalyx sulfation and other metabolites, including hormones. Components of
COVID-19 vaccines, such as DNA and mRNA material, spike protein antigen and
lipid nanoparticles, are involved in possible cytotoxic effects. The common thread
connecting these adverse events is endotheliopathy or glycocalyx degradation,
caused by depleted glutathione and inorganic sulfate levels, shear stress from
circulating nanoparticles, aggregation and formation of protein coronas; lead-
ing to imbalanced immune responses and chronic release of pro-inflammatory
cytokines, ultimately resulting in oxidative stress and systemic inflammatory re-
sponse syndrome. By understanding the underlying pathophysiology of severe

adverse events, better treatment options can be explored.
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vaccination.>'*!7 Several studies communicated the ex-

During the past 3 years, the deployment of DNA and
mRNA vaccines has occurred at an unparalleled pace
and scope to fortify immunological defences against
SARS-CoV-2. Despite the documented efficacy of this
vaccination strategy,' there have been reports of seri-
ous adverse events (AEs)* % and unexpected deaths after

istence of symptoms related to rare, or never-described
before syndromes, which developed after COVID-19 vacci-
nation.'®"’ There were too many serious AEs that warrant
attention. Systematic reviews by Hulscher et al.*>*' and a
report by Rancourt et al.** found a high probability of a
causal link between COVID-19 vaccines and death. The
critical question therefore arises: What is the underlying
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pathophysiology of severe AEs and deaths experienced by
many COVID-19 vaccine recipients?

Here, we approach this question from an undersul-
fated, or degraded, epithelial glycocalyx (EpGL) and en-
dothelial glycocalyx (EnGL) perspective. In a previous
review article,”> we examined how an undersulfated and
degraded EpGL and EnGL predispose to COVID-19 and
various chronic diseases. This review focuses on the effect
of an undersulfated and degraded glycocalyx (GL) on sus-
ceptibility to AEs postvaccination, and the impact of the
various ingredients of the COVID-19 vaccine on causing
epithelial (Ep) or endothelial (En) degradation.

Under healthy conditions, an adequately sulfated
Ep- and EnGL possesses immunomodulating, anti-
inflammatory, anticoagulant and vasodilatory mecha-
nisms. Endotheliopathy,®**® evidence of SARS-CoV-2
infection of pulmonary and extrapulmonary endothelial
cells (EnCs),?*® reports of viraemia®**° and multiorgan
injury,?”*! all confirm the hypothesis that COVID-19 and
COVID-19 vaccine AEs are, in part, vascular diseases of
the endothelium. Clinical studies have shown that En dys-
function is a major determinant of severe COVID-19%**73
and vaccine-induced AEs."**** At the vascular surface,
the EnGL is essential in regulating barrier function, im-
munomodulation, nitric oxide (NO) production and va-
sorelaxation, mechanotransduction, and resistance to
oxidative stress, coagulation and inflammation.

The GL undergoes constant constitutive remodelling,
and a balance of synthesis and degradation of the GL com-
ponents maintains homeostasis. However, various factors,
such as infection, inflammation, toxins and heavy metals,
malnutrition, ischemia/reperfusion and hyperglycaemia,
can lead to degradation of the GL and release, or shed, bio-
active GL fragments, exacerbating disease.”® Furthermore,
GL degradation fragments can act as damage-associated
molecular patterns, amplifying pro-inflammatory re-
sponses and En injury, resulting in barrier dysfunction.
The GL is an extremely delicate layer, where changing or
removing one specific component can result in the loss of
function of the total.®

The degree of sulfation and the position of the sulfate
groups on the glycosaminoglycan (GAG) chains determine
the biological function of the GL.* In chronic inflamma-
tion, high levels of 3-O-sulfotransferase 3B (30ST-3B)
and unsulfated N-unsubstituted glucosamine units
(GIcNH2) lead to reduced heparan sulfate (HS) sulfation.
This facilitates the binding of SARS-CoV-2 to receptors of
angiotensin-converting enzyme 2 (ACE2).* The availabil-
ity of inorganic sulfate (SO,*7) is crucial for GAG sulfa-
tion. Various dietary and environmental factors decrease
the availability of inorganic sulfate, causing protein catab-
olism, such as human serum albumin (HSA), glutathione
(GSH) and Secreted Protein Acidic and Rich in Cysteine

(SPARC), to provide sulfur amino acids (SAAs) for inor-
ganic sulfate synthesis (Figure 1).

The most popular vaccines commercially used against
SARS-CoV-2were the nonreplicating mRNA vaccines from
Moderna (mRNA 1273) and Pfizer-BioNTech — BNT162b2
(Comirnaty™), the prophylactic DNA vaccine, INO-
4800, as well as the replicating DNA viral vector vaccine,
ChAdOx1 nCoV-19 (Oxford/AstraZeneca or Vaxzevria®),
for the expression of spike protein (Sp) by target cells
in vivo. This review emphasizes the Pfizer-BioNTech (re-
ferred to as ‘Pfizer’ in the rest of this review) and Moderna
vaccines, as they are the most widely used and compre-
hensive published data are available. However, most of
the concerns raised also apply to the other COVID-19 vac-
cines, and DNA and mRNA vaccines in general.

Additional degradation complications of the GL can
be expected because of the introduction of nanoparticles
(NPs) through nanomedicine and vaccines. NPs form an
integral part of the delivery system of mRNA vaccines.
Various liposomal NPs have been approved for inclusion
in nanodrugs,** while lipid nanoparticles (LNPs) re-
ceived FDA approval® for inclusion in COVID-19 mRNA
vaccines.*"** The patents on the Pfizer* and Moderna*
mRNA vaccines can confirm this.

We hypothesize that after COVID-19 vaccination, the
combination of the genetic-vaccine-generated (GVG) Sp
antigen, the genetic material and LNPs, will ultimately
contribute to GL degradation; mainly through the gen-
eration of chronic, skewed or excessive inflammatory
responses, and oxidative stress. Therefore, AEs experi-
enced postvaccination results from compromised barrier
functions, circulating pro-inflammatory cytokines, reac-
tive oxygen species (ROS), GL fragments, harmful NPs,
and soluble GVG Sp and its fragments, all of which cause
various cytotoxic effects. These effects will be exacerbated
against a milieu of existing inflammation, chronic infec-
tion, genetic variability, malnutrition and toxicity, explain-
ing the variation in severity of AEs experienced. Many
studies underscore the importance of adequately sulfated
GAGs and other metabolites as endogenous regulators of
cancer, thrombosis, myocarditis, neurodegeneration and
other disease conditions. Therefore, GL injury is a patho-
logical manifestation capable of exacerbating disease,
with circulating GL fragments causing GL injury in mul-
tiple organs.*>*?

This narrative review article aims to highlight the po-
tential effect of COVID-19 DNA and mRNA vaccines on
sulfation, the GL and innate immunity; and how these fac-
tors could explain the various AEs experienced by many
COVID-19 vaccine recipients. Therefore, the main focus
of this review article is on understanding the etiological
factors and pathophysiology of the AEs experienced by
many recipients of the various COVID-19 vaccines.
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FIGURE 1 Sulfur metabolism and sulfation diagram. The essential sulfur amino acid (SAA) methionine converts to cysteine, which is
a precursor to human serum albumin (HSA), cystine, coenzyme A, glutathione (GSH), hydrogen sulfide (H,S), taurine and inorganic sulfate
(SO,*"). H,S can be converted to thiosulfate (S,05>") and sulfite (SO,*~), which is oxidized to sulfate. The enzyme cystathionine-p-synthase
(CBS) converts homocysteine to cystathionine, while cysteine dioxygenase (CDO) is responsible for the conversion of cysteine to cysteine
sulfinate. Sulfite oxidase (SUOX) oxidizes sulfite to sulfate.”* The availability of inorganic sulfate (SO,*”) is the rate-limiting factor for
sulfation of the glycosaminoglycan (GAG) heparan sulfate (HS). During chronic inflammation with overexpression of 3-O-sulfotransferase
3B (30ST-3B) and the presence of unsulfated N-unsubstituted glucosamine units (GIcNH2), decreased HS sulfation will facilitate the
binding of SARS-CoV-2 to receptors of the angiotensin-converting enzyme 2 (ACE2). With limited availability of inorganic sulfate, proteins
such as HSA, GSH and Secreted Protein Acidic and Rich in Cysteine (SPARC) would be catabolized to provide SAAs for inorganic sulfate

synthesis. Adapted by CC BY 4.0.%

2 | DNA AND MRNA VACCINES—
SAFETY CONCERNS

mRNA technology is not new. Before the SARS-CoV-2
pandemic, Moderna had already conducted a clinical
trial with an LNP-formulated mRNA vaccine against the
influenza virus.*>*® The Pfizer and Moderna COVID-19
mRNA vaccines are synthetic nucleoside-modified mRNA
vaccines formulated in LNPs, which encode either the tri-
merized receptor-binding domain (RBD) of the Sp in S1

(BNT162b1) or the prefusion stabilized full-length Sp of
SARS-CoV-2 (Moderna and BNT162b2). LNPs ensure
stability and facilitate passage of nonreplicating and non-
self-amplified RNA through the cell membrane to direct
transient expression of the SARS-CoV-2 Sp antigen.**"~*
With increased improvements and stability of mRNA vac-
cines, protein expression can be achieved for days after
direct in vivo administration.’®! There exist subtle dif-
ferences between the Moderna and Pfizer vaccines, in
relation to the RNA and LNP carriers, and the Moderna
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vaccine used a higher amount of RNA per dose (100 pg)
compared to the Pfizer vaccine (30 pg).*’

Although preclinical and clinical trials were con-
ducted, several concerns have been raised in the scientific
community about the safety and long-term side effects of
COVID-19 vaccines.*>**>* The two main aspects covered
in this review about the COVID-19 vaccines that are likely
linked to toxic effects are the delivery vehicle of the genes
and the GVG Sp antigen—see more regarding the impact
of the Sp in Section 3.1. The main ingredients used in the
delivery hydrogel that are possibly linked to cytotoxic ef-
fects are LNPs> " and polyethylene glycol (PEG).***>°

RNA and DNA viruses are known for their cytotoxic-
ity and potent immunogenicity, leading to the popularity
of nonviral vectors such as cationic lipids and polymers
as gene carriers. However, until recently, cytotoxicity re-
mained a significant challenge for nonviral vector use in
gene therapy.®® The cytotoxicity of lipid-based nanoma-
terials will depend on the dose, lipid properties and cell
types studied.**** The in vivo application of LNPs has been
reported to induce liver and lung injuries in animals,*"®*
attributed to lipid-material cytotoxicity and induction
of oxidative stress and pro-inflammatory cytokines.®**
However, it is crucial to note that in vitro toxicity does not
always correlate well with in vivo cytotoxicity,”*®* and ad-
ditional human clinical data are necessary to form a com-
prehensive understanding of the safety profile of LNPs.

Recent advances in LNP technology have led to sig-
nificant improvements in its stability, along with efforts
to mitigate potential adverse effects. To reduce the cyto-
toxicity of cationic lipid-based NPs and improve targeted
delivery, ionizable and PEGylated LNPs became popular.
Ionizable cationic LNPs are pH-sensitive; the lipid-rich
ionizable core structure is triggered by a pH change that
induces endosomal DNA or RNA release due to the lower
pH of the endosome (Figure 2).

Therefore, ionizable cationic lipids are deprotonated
under neutral conditions and positively charged under low
pH conditions, thus below the acid dissociation constant
(pKa) of the lipid.®*"® The LNPs used in the Pfizer and
Moderna COVID-19 vaccines contain an ionizable lipid,
a structural phospholipid, cholesterol and a PEG-lipid in
molar ratio.”® The ionizable lipid used in the Pfizer vac-
cine is ALC-0315, while SM-102 was used in the Moderna
vaccine.”" They differed in stability due to steric factors:
ALC-0315 has four very short tails compared to SM-102,
which is more stable with only three tails, while one is
long enough to stabilize the lipid in the lipid leaflet.%®
Small changes in LNP chemistry or formulation, the use of
modified nucleosides, the 5’-cytosinephospho-guanine-3’
(CpG) content and the length differences between conven-
tional mRNA, plus the molar ratios and excipients used,
will affect targetability, transfection and cytotoxicity.®””?

The cytotoxicity, structural and biological properties of
LNPs are not attributed to a single lipid component alone,
but to the combination of lipids.®®

2.1 | Adsorption and distribution
The absorption, distribution and excretion of NPs will
be affected by various factors, such as the administration
routes, physicochemical properties, particle agglomera-
tion and surface coatings. After entering the body, LNPs
can be systemically distributed through the lymph system,
blood circulation and cross biological barriers, resulting
in varying degrees of retention in different organs. Due
to their very small nanosize, LNPs can pass through nor-
mal physiological barriers, such as the blood-air barrier,
blood-testis barrier, blood-brain barrier (BBB) and the
blood-placental barrier,*’*”> thus reaching various or-
gans where they can induce acute or chronic injuries in
tissues.”®

LNP's main route of entry into cells is endocytosis or
phagocytosis, depending on its size and lipid properties.
Once the LNPs are internalized, they are transported
through endosomes and lysosomes, where the LNP cargo
is digested or exocytosed. Therefore, endosomal escape is
a crucial step for effective gene delivery through LNPs.”*

2.2 | Membrane and cellular damage
Cationic lipids are known to be excellent surfactants with
the potential to cause solubilization, poration and lysis of
the lipid bilayer cell membrane.**”! Tonizable LNPs also
have endosome lytic properties to ensure the endosomal
escape of the cargo.®’

One of the hallmarks of ionizable LNPs is their ac-
tive approach to endosomal escape. The ionizable lipid
component becomes charged upon endosomal acidifi-
cation, promoting electrostatic interactions between the
LNP's ionizable cationic lipids and the anionic lipids in
the endosomal membrane, thus destabilizing the endoso-
mal membrane to promote endosomal escape of nucleic
acids.®®%"! However, interactions of LNPs with cell mem-
branes, in general, can cause systemic cytotoxicity with
related toxic side effects in vivo if the amphiphilic prop-
erties of the lipids and the surface property of the LNP
are not accurately controlled in the physiological pH (7.4)
and endosomal pH range.”" Cytotoxicity will also depend
on the charge ratio between the cationic lipid species and
the nucleic acids, where higher charge ratios are generally
more toxic to various cell types.*

Endosomal signalling is tightly regulated by mech-
anisms that are not yet fully understood and differ from
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FIGURE 2 Schematic illustration of the endosomal release of mRNA from ionizable lipid nanoparticles (LNPs); the consequent
inflammatory responses and oxidative stress, with cellular release of spike protein (Sp) fragments, cytokines and glycocalyx fragments into

the circulation.

those originating from receptors on the plasma mem-
brane.”” Signals from the diverse families of endosomal re-
ceptors control essential growth, differentiation, survival,
inflammation and immunity processes. Since defects in
these mechanisms can cause disease, the potential ad-
verse effects of ionizable LNPs on endosomal membrane
destabilization must be considered. However, the mech-
anism of endocytosis will specify the outcome of endo-
somal signalling. Endosomes are important sites where
receptor signalling can be initiated, sustained and termi-
nated, such as TLR signalling, which are major mediators
of innate immunity.”’

2.3 | Inflammation and cell death

LNPs can cause cell death through autophagy, necrosis
triggered by inflammatory responses and ROS, or apop-
tosis through damage to the plasma membrane.” It has
been shown that the so-called ‘mix and match’ strategies
of combining two or more existing vaccine platforms,
such as the adenoviral and mRNA-LNP vaccines, resulted

in exceptionally potent immune responses,”** with a

consequent higher tendency for AEs.*’ When inflam-
mation is activated through ROS or primed by antigens,
macrophages trigger a natural innate immune response
(Figure 2). Immunotoxicity may arise following vaccina-
tion if the immune response becomes excessive, chronic,
or leads to a skewed T-cell response favouring Th1. The in-
nate immune response triggered by an antigen is primar-
ily transient, and an adequately sulfated Ep- and EnGL
can successfully modulate the response. However, in in-
dividuals with compromised GL barriers and preexisting
chronic inflammation, AEs can be expected after vaccina-
tion due to a ‘systemic inflammatory response syndrome’.

In addition to stabilizing mRNA and facilitating in-
tracellular delivery, LNPs can exert an adjuvant effect
on mRNA vaccines.®® Although LNPs are more effec-
tive and demonstrate less immunogenicity and cytotox-
icity than liposomes,®” they trigger pro-inflammatory
responses. Evidence shows that ionizable cationic lipids
within LNPs can induce pro-inflammatory cytokines by
activating TLRs within endosomes.®*®* The autophagy
pathway is related to phagocytosis by TLR signalling in
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macrophages.® Endosomes serve as a site for coordinated
activation of signalling pathways stimulated by TLR4.”
LNPs were shown to cause TLR4 activation that induces
pro-inflammatory cytokines, such as IL-6,%% and type
I IFN®*77 (Figure 2). Ota et al. and Li et al.***” pointed
out that LNP-induced cytotoxicity is caused by the indi-
rect effect of pro-inflammatory cytokines, such as TNF«
and IFNy, which can result in apoptosis of EnCs in a
dose-dependent manner in vitro and in vivo. Terentes-
Printzios et al.*® demonstrated a significant increase in
high-sensitive C-reactive protein (hs-CRP) levels 48 h after
Pfizer vaccination, compared to the control. This increase
in inflammatory markers was most prominent after the
second dose and was associated with a moderate transient
degradation of En function. More long-term studies are
needed to determine the effect of mRNA vaccination on
inflammatory markers, oxidative stress and En integrity.

Barmada et al. observed elevations in circulating
interleukins (IL-1f3, IL-1RA and IL-15), chemokines
(CCL4, CXCL1 and CXCL10) and matrix metalloprotein-
ase (MMP1, MMP8, MMP9 and TIMP1) in a cohort of
patients who developed myocarditis and/or pericarditis
after vaccination with SARS-CoV-2 LNP-mRNA. Since IL-
1f3 was elevated and the LNP component of LNP-mRNA
vaccines alone was found to be highly inflammatory, with
responses centring around IL-6 and IL-13, upstream ac-
tivation of the NLRP3 inflammasome and associated cy-
tokines may play a role in the pathogenesis of COVID-19
vaccine-induced myocarditis.** He et al.”® demonstrated
in a murine model that an adenovector-based vaccine
elicited a different immune response from a LNP-mRNA
vaccine, when sequentially inoculated. They speculated
that this may be related to the different natural immune
responses activated by the delivery system.

Kedmi et al. observed in vitro that cationic LNPs inter-
act directly with immune cells and lead to immune activa-
tion, favouring a Th1 (IL-2, IFNy, TNFa) and Th17 (IL-17
and IL-6) cytokine response. IL-17 has been shown to play
a crucial role in the induction of autoimmune diseases.
They confirmed that cationic LNP-siRNA complexes in-
duce immune responses by up-regulating Th1 cytokines
and IFN-responsive genes.’' It was shown that mRNA-
LNP immunogenicity would depend on the structure and
pKa of the ionizable lipid.®® Dokka et al. reported that
highly charged multivalent cationic liposomes caused a
marked inflammatory response, determined by neutro-
phil influx and oxidative burst of lung cells, where the ef-
fect was charge-related.®

In a mouse nucleoside-modified mRNA vaccine study,
it was confirmed that LNPs are highly inflammatory, in-
dependent of the delivery route, evidenced by excessive
neutrophil infiltration, activation of various inflamma-
tory pathways and production of various inflammatory

cytokines and chemokines.” It should be noted that in-
flammatory responses can be exacerbated on a background
of preexisting inflammatory conditions, where this effect
was proven to be specific to the LNP platform, acting inde-
pendently of the mRNA cargo.”> >’ Sedic et al. confirmed
in animal studies that the observed pro-inflammatory re-
sponse and mild liver toxicity were primarily driven by
the LNP vehicle, with repeated administration of hEPO-
mRNA in LNPs. They also found that repeated dosing
increases complement activation (C3a, C5b-9). They con-
cluded that given the similarities observed in LNP-related
toxicities between rats and monkeys, it is likely that simi-
lar effects will translate to the clinic.®?

In vitro, it has been shown that cationic LNPs, whether
or not they are complexed with nucleic acids, are highly
toxic to macrophages.”® Macrophages can phagocytose
a large amount of LNPs, and this phagocytic activity of
macrophages is responsible for the high degree of toxic-
ity. Noncationic LNPs are also toxic to phagocytic cells,
but to a lesser extent than cationic LNPs. Although the
addition of PEG 2000 might seem to abolish toxicity to
some degree, the presence of pH-sensitive lipids in ioniz-
able LNPs can enhance cationic LNP toxicity by destabi-
lizing the endosomal membrane, releasing cationic lipids
into the cytoplasm.60 Yavuz et al.”’ demonstrated that,
independently of the type of ionizable lipid used to for-
mulate LNPs, intramuscularly immunized mice induced
Thl-biased polarization. This aligns with the mRNA
COVID-19 vaccines that caused Thl-cellular-biased in-
nate immune responses, with the secretion of IL-6, IL-18,
TNFa and IFN\(.QI_93 Therefore, LNPs can induce macro-
phage M1 polarization through the foreign body response.
It is known that continuous M1 polarization can release
excessive pro-inflammatory cytokines, such as IL-1, NO
and TNFa, as well as ROS, to induce a severe or chronic
inflammatory response.”* In M1-activated macrophages,
30ST-3B is up-regulated, with less HS and a lower degree
of sulfation, compared to reparative M2 macrophages.*
Therefore, M1 macrophages with less HS and lower sulfa-
tion, exacerbated by LNPs and ROS, will be more vulnera-
ble to viral and SARS-CoV-2 infection and internalization
of the GVG Sp.

2.4 | Oxidative stress

Generated ROS leads to oxidative stress capable of activat-
ing innate immune responses. However, as noted above,
the release of pro-inflammatory cytokines can be induced
by LNPs independently of ROS production (Figure 2).
LNPs also stimulate ROS generation,”" which induces cy-
totoxicity and affects intracellular signalling pathways.**’®
ROS acts as a second messenger in many intracellular
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signalling cascades. It can lead to cellular macromolecu-
lar damage, such as DNA fragmentation, membrane lipid
breakdown, protein denaturation and mitochondrial
dysfunction, significantly affecting cell metabolism and
signalling,”>®” resulting in deleterious effects on cell via-
bility, proliferation and cell death.”**° The general belief
is that the excessive ROS levels produced by NPs are the
main reason for their cytotoxicity. %%

Oxidative stress and the associated inflammation
resulting from increased ROS production and/or de-
creased antioxidant defence contribute to cytotoxicity.
GSH, the most abundant antioxidant that plays a crucial
role in antioxidant defence against oxidative damage of
ROS, regulates various metabolic pathways essential for
whole-body homeostasis. GSH is responsible for main-
taining mitochondrial function, antiviral defence, regu-
lation of cellular proliferation, apoptosis, DNA synthesis,
microtubular-related processes and immune responses.
Variations in GSH levels are a hallmark of many patholog-
ical disorders, including cancer, metabolic abnormalities
and cardiovascular disease.'**'* The SAA, cysteine (Cys),
is a precursor to GSH and inorganic sulfate, hydrogen sul-
fide (H,S), HSA and taurine (Figure 1)."** It is important
to understand the homeostatic interaction between these
sulfur compounds and the effect of inorganic sulfate on
cellular health, GL intetrity and innate immune defences
against infectious disease. Inorganic sulfate levels are di-
rectly correlated with GSH levels and are the rate-limiting
factor for sulfation. This topic has extensively been re-
viewed elsewhere.”>'**

2.5 | Functionalization of nanoparticles
To improve serum stability, prevent aggregation and ex-
tend the circulation time of genetic material, PEG polymer
chains are attached to LNPs (PEGylation).105 However,
PEG's immunogenicity and shortened biocirculation have
been demonstrated by repeated doses.'’® Administration
of repeated doses of immune-stimulatory nucleic acids
encapsulated with PEG-LNP, as in the case of mRNA vac-
cines, can generate a robust and long-lived antibody (Ab)
response against PEG.?® Therefore, there is an increased
risk of acute hypersensitivity or anaphylaxis upon subse-
quent administration of mRNA vaccines.*”*

Although some of the cytotoxic effects of LNPs are
reduced through functionalization with polymers, such
as PEG,®7>1971% ppG_lipids can dissociate in biolog-
ical environments, thus increasing the toxicity of the
LNPs.%87110%110 Eyen if LNPs have been functionalized
with PEG to decrease toxicity and increase circulation
time,”® PEG can cause severe allergy-like symptoms.®®!!!
Furthermore, these functionalized surface modifications

and cloaking techniques can allow NPs to avoid recogni-
tion and clearance through detoxification pathways,***?
extending circulation time,”>'" or they can accumulate in
the system.'™* Although this might be favourable from a
drug development perspective, the systemic consequences
in vivo from the hampered detoxification of NPs are not
considered.

Seen that both mRNA and PEG will be degraded over
time, the long-term cytotoxicity of COVID-19 vaccines
and AE experienced months after vaccination® could
probably be best ascribed to the presence of LNPs and
the GVG Sp antigen, as well as the generated ROS,'* pro-
tein coronas, pro-inflammatory immune responses and
complement activation.®® The fact that the failure of the
COVID-19 vaccines to determine durable immunity lon-
ger than 3-4months, if at all, for vectorial vaccines and
6months for mRNA vaccines, required a third boosting
dose, without any consideration of the possible build-up
of the vaccine toxicological substances in the system.
However, it has been shown that, after repeated admin-
istration, PEGylated LNPs can undergo accelerated blood
clearance and complement activation-related pseudoal-
lergy, triggered by the immune system in reaction to PEG.
Therefore, accelerated blood clearance is mediated by Abs
raised against PEGylated LNPs after the first injection.®®

2.6 | Protein coronas
NPs have a high capacity to adsorb small molecules from
physiological fluids that are partially hydrophobic, and
with low solubility, by interacting with the NP surface
through electrostatic, hydrophobic and van der Waals
forces.'*”'% It is well established that NPs, due to their
high free surface charge, can aggregate and interact with
proteins in biological fluids, forming protein coronas,
which will have a considerable impact on many physi-
ological processes,m’no’ns’116 as well as biodistribution
and clearance of the NPs.®*'%® The formed protein co-
ronas will result in protein aggregation, clustering and
fibrillation, affecting innate immune responses, mac-
rophage recognition, circulation, biodistribution, cellular
uptake, clearance and therefore systemic toxicity of the
NPS.107’108’110’117_119

In addition to protein interactions with NPs, inter-
actions exist between neighbouring proteins on the
protein corona, creating a dynamic system as proteins
continuously adsorb and desorb from a protein corona.
Furthermore, NP-induced conformational changes in
proteins can cause proteins to expose hidden binding sites
that may trigger immune responses.'®

Aliakbarinodehi et al.''* demonstrated that the ad-
sorption of serum proteins to the surface of LNPs is pH
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dependent. According to the Henderson-Hasselbalch
equation, if ionizable LNPs are used with an apparent
pKa of 6.4, about 10% of the ionizable LNPs are positively
charged in blood (at pH7.4).°® The fact that LNPs form
strong bonds with platelets, haemoglobin, antithrombin
(AT) III, HSA and other plasma proteins essential for
major physiological functions®®!”''® means that these
bound proteins cannot perform their functions, which
will affect many physiological pathways and the availabil-
ity of these and other molecules (Figure 3). HSA is a pre-
cursor to Cys and consequently affects the availability of
GSH and inorganic sulfate.'® Thus, if HSA is consumed
by protein corona formation, it will negatively impact the
integrity of the GL.

In addition, it has been shown that the secondary struc-
ture of HSA changes after adsorption onto NPs, and the
presence of HSA and apolipoproteins in protein coronas
provides LNPs with a stealth effect, promoting a prolonged
circulation time.'® In addition to HSA and platelets,
various proteins and other cellular materials, such as
immunoglobulins, fibrinogen, plasma fibronectin and vi-
tronectin, can form protein coronas on NPs,®%!7,108:110.119
These molecules present in the corona bestow NPs with
new properties, transforming their interactions at the bio-
nano interface and biodistribution while interfering with
both the designed properties of NP and innate biomo-
lecular functions.'®''%"” For example, NPs that bind to
apolipoprotein E are often trafficked to the liver, produc-
ing liver toxicity.'”® Bashiri et al.'® critically reviewed the
complexity and effects of protein coronas; however, more
in vivo studies are required to understand the complex
and dynamic nature of the LNP-protein complex and its
interactions with biomolecules.

Many different properties, such as the type of NP,
chemical concentration, surface functionalization and

Blood Flow

oRe B @

Blood Clot

molecular composition, shape, curvature, size and surface
charge of the NPs, will all play a role in the composition
and evolution of biomaterials that adsorb on their surface,
explaining in part the variation in biocompatibility and ef-
fects seemingly exerted by NPs.®®!9719%8110 Epyironmental
conditions, such as pH, ionic strength, shear flow and
temperature, protein concentration, size, and glycosyla-
tion, will impact protein corona formation.'® Although
PEGylation may show antifouling capacity, it cannot
fully prevent protein binding and immunogenicity.*®'"
Apolipoproteins have been shown to be enriched in lipo-
some corona-NP complexes, regardless of PEGylation.
There has also been evidence of PEG accumulation in
protein corona complexes and uncontrolled oxidative
degradation of PEG into toxic products.'®

As in the case of Onpattro,*® the FDA-approved liver-
targeting LNP, NPs can be exploited for targeted delivery
and protein binding. Onpattro was designed to exploit the
binding of apolipoprotein E to LNPs in circulation to de-
liver siRNA to hepatocytes via the LDL R receptor. Before
administering Onpattro, a predosing immunosuppres-
sive cocktail is necessary, consisting of acetaminophen, a
glucocorticoid and an H1/H2 blocker, to offset potential
infusion-related reactions,®® which confirms the immuno-
genicity of LNPs.

The fact that NPs can induce conformational changes
in adsorbed proteins, remove them out of circulation and
affect their functionality, can cause unwanted effects, such
as generating a pro-inflammatory immune response, al-
tering enzyme activity and causing aggregation of blood
components (Figure 3). The design and synthesis of
LNPs with enhanced potency and reduced cytotoxicity
is a major focus of current LNP research. However, the
considerations of intellectual property surrounding them
present an additional barrier to clinical translation.

Red blood cell
Hemoglobin
Platelet
Albumin
Antithrombin

Lipid nanoparticle

FIGURE 3 Schematic illustration
of protein corona formation and the
blood clot inducing potential of lipid
nanoparticles (LNPs).
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2.7 | DNA and synthetic mRNA

Although DNA has a chance of potential genome in-
tegration,®”'2*'?! it is well established that DNA and
mRNA can be immunotoxic®"**”® (Figure 2). The main
intrinsic limitations of mRNA vaccines are the instabil-
ity of mRNA molecules and activation of innate immune
responses.'?* Even though LNPs have been actively re-
cruited to overcome such limitations, they also have
drawbacks, such as a short half-life in the body and a
low loading efficiency.'*'** To overcome these disad-
vantages, graphene oxide and graphene quantum dots
are often used to transfect genes.121 However, du Preez
and Halma warned that when NPs are used as the deliv-
ery vehicle for genes, the side effects on normal healthy
cells, other than the target cells, must be considered.®
Furthermore, Pfizer and Moderna use N1-methyl-
pseudouridine-modified mRNA to minimize inherent
mRNA immunogenicity; however, internalization of
foreign mRNA into the cytosol is detected by intracel-
lular RNA sensors, such as endosomal TLR and cyto-
plasmic nucleic acid sensors. Binding of mRNA to these
host defence receptors will activate innate immune
pathways,® leading to the expression of hundreds of
genes.”’ In fact, Abramczyk et al.'"** observed increased
cell signalling when cells were incubated with the Pfizer
mRNA vaccine. In addition, innate immune responses
have been shown to inhibit in vivo gene transfer and
expression.64 Moreover, these activated innate immune
responses may further degrade the GL.

Antisense RNA can interact directly or indirectly with
DNA methyltransferase, interfering with DNA methyla-
tion and gene transcription. Therefore, synthetic mRNA
can eventually lead to epigenetic and/or genomic modi-
fications in dividing and nondividing cells. It can lead to
modifications of the chromatin structure, chromosomal
integration of retrotranscribed synthetic mRNA, genotox-
icity and oncogenesis following mRNA vaccine uptake.>®
Synthetic mRNA has been shown to activate the expres-
sion of endogenous transposable elements, undergo re-
verse transcription and enter the cell nucleus.'* Mulroney
et al.'*® raised concerns about their observations of ri-
bosomal frameshifting that results in mistranslation of
COVID-19 mRNA-based vaccines in humans, which can
cause potential off-target effects.

Free plasmid DNA also induces the production of pro-
inflammatory cytokines, where the immune response is
significantly enhanced when lipid-DNA complexes are
used. Cytokine production was observed to be mainly
due to unmethylated CpG sequences in plasmid DNA.*
Therefore, plasmid DNA can serve as a potent immuno-
gen when delivered to immune cells in an ‘intact’ form,
while cationic lipid-DNA complexes largely induce

toxicity. McKernan et al.'® found high levels of DNA con-
tamination that exceed the European Medicines Agency
(EMA) 330ng/mg requirement and the FDAs 10ng/dose
requirements, when they examined the nucleic acid com-
position of expired vials of the Moderna and Pfizer mRNA
vaccines. The exact ratio of linear fragmented DNA ver-
sus intact circular plasmid DNA is unknown. However,
there is a risk of genome integration, since double-
stranded DNA contamination of the sequence encoding
the GVG Sp will not require LINE-1 for reverse transcrip-
tion. Furthermore, an SV40 nuclear localization signal in
Pfizer's vaccine vector'®” will also increase the risk of in-
tegration, while SV40 is a cancer promotor. Furthermore,
plasmid DNA contamination from E.coli preps is often
co-contaminated with lipopolysaccharide, leading to ana-
phylaxis after injection.'*

The safety profile of nucleoside-modified synthetic
mRNA is far from completely understood, and there are
no studies available on what happens when mRNA-LNP
formulations are stored for long periods.” Before the
rollout of the COVID-19 vaccines, only limited in vivo
research studies or trials were conducted to evaluate the
biodistribution, cell uptake, translation rates, endosomal
escape, functional half-life and inactivation kinetics of
synthetic mRNA and DNA vaccines.'*® Neither were the
rates and duration of vaccine-induced antigen expression
evaluated in different cell types, nor potential interactions
with the host genome.>

In the next section, the possible effects of the genetic
material and LNPs, as well as the Sp antigen, are cor-
related with AEs experienced by the COVID-19 vaccine
recipients.

3 | ADVERSE EVENTS (AES)

Since billions of people have been vaccinated with one of
the COVID-19 vaccines in a short time frame, it is easier
to identify AEs linked to COVID-19 vaccination. Rare
events of anaphylactic shock have been reported, above
the average normal incidence in the population, after
COVID-19 vaccination,>*”'?° in addition to various seri-
ous AEs. Although correlation does not necessarily mean
causation, active monitoring and awareness of reported
postvaccination AEs are essential. It is important to note
that when AEs were analysed on the EudraVigilance data-
base!'® for the Pfizer, Moderna, AstraZeneca and Johnson
& Johnson vaccines, the percentage frequencies of spe-
cific AEs and fatal outcomes for all four COVID-19 vac-
cines were close to each other. Therefore, the AE profiles
of these four vaccines are very similar, if not identical.
Although cardiovascular AEs are among the most danger-
ous, nervous system and musculoskeletal disorders were
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the most common organ system-related AEs, followed by
gastrointestinal, infectious and skin disorders.'*

The capacity of the COVID-19 vaccines to protect
against SARS-CoV-2 infection and spread is still a matter
of debate.”’”"** While various studies demonstrated the
efficacy of COVID-19 vaccines against SARS-CoV-2 infec-
tion, with less severe symptoms, a reduction in COVID-19-
related hospitalization and deaths,®* 1% the effect of the
vaccines on all-cause mortality rates was not effectively
determined. In the initial phase III randomized control
adult trials of the Pfizer and Moderna vaccines, 37 people
died in the vaccine group, compared to 33 in the placebo
arm. This indicates that neither of the vaccines decreased
or increased the absolute risk of death by more than
0.08%.'%® Although the study by Ioannou et al. confirmed
the very high effectiveness of mRNA vaccines against
COVID-19-related death, it did not look at all-cause mor-
tality rates. Furthermore, they found that the effectiveness
of the COVID-19 vaccine against SARS-CoV-2 infection
was substantially lower than previously reported,"** while
several studies indicated that the immunity conferred by
the COVID-19 vaccines wanes over time."*>'*’ Adhikari
et al.'*! found an increase in in-hospital mortality rates
when they compared vaccinated versus nonvaccinated
patients with severe COVID-19. Alquraan et al.'** re-
ported how mutations in the SARS-CoV-2 Sp domain re-
sult in a reduction in vaccine efficiency. Moreover, they
established that although higher transmission rates were
observed with the Omnicron variant, compared to previ-
ous variants, disease severity declined. Compared to Delta
variants, Ward et al.'*? reported a 66% reduction in death
risk with Omicron BA.1. Therefore, a decrease in hospital-
izations could more likely be ascribed to the lower viru-
lence of mutated variants than to COVID-19 vaccination.

Most published research determining the effectiveness
of the COVID-19 vaccines was short-term observational
studies with known limitations. Fung & Doshi'** and
Hoeg et al.'*® pointed out the bias in the initial observa-
tional studies, which overstated the effectiveness of the
COVID-19 vaccines. To accurately determine the effec-
tiveness of COVID-19 vaccines, all-cause mortality and
the risk of severe AEs, as the most objective and import-
ant outcomes, should be determined in long-term quality
randomized controlled trials. There is no point in being
saved from COVID-19 through COVID-19 vaccination,
but dying of a heart attack or crippled lifelong with a neu-
rological disease due to an AE from the vaccines.

Fraiman et al. evaluated the risk of severe AEs in the
mRNA COVID-19 vaccine group, relative to placebo, in
both the Pfizer and Moderna adult phase III trials and
found 10.1 (Pfizer) and 15.1 (Moderna) additional AEs for
every 10,000 individuals vaccinated.” Furthermore, they
identified a 36% higher risk of severe AEs in vaccinated

participants in the Pfizer trial. The excess risk of serious
AEs exceeded the reduction in COVID-19 hospitalizations
in both the Pfizer and Moderna trials. It is clear from these
results that COVID-19 vaccines are associated with more
harm than initially estimated at the time of emergency
authorization.’

To draw a parallel between serious AEs™ and
deaths™'%?*1%7 with COVID-19 vaccines, the etiological
factors possibly underlying the various AEs must be ex-
plored and better understood. In addition to the effects
of the GVG Sp, genetic material, immune responses and
general health status of the vaccinee, it is necessary to
consider the possible consequences of the LNPs and ROS
generation,102 as well as the impact of the vaccines on the
integrity of the GL, when evaluating the pathophysiology
of COVID-19 vaccine-induced severe AEs. This review
paper focuses on understanding the pathophysiology of
documented severe AEs experienced by many vaccine re-
cipients, as summarized in Table 1.

146

3.1 | The role of the spike protein in
adverse events

Some aspects explicitly of the GVG Sp, such as stability,
charge potential, its immunostimulating properties and
possible systemic toxicity, are highlighted below. The
fact that older people (>65) are generally more suscepti-
ble to COVID-19,2!¥ while a younger generation (aged
18-64)'* seems to be more at risk for COVID-19 vaccine
AEs,*' indicates that other factors are also at play, other
than the neutralizing antibody (nAb) response to the Sp.
Although the ACE2 receptor is the primary entry re-
ceptor, various other receptors, ligands, proteases and co-
factors interact with SARS-CoV-2 Sp to facilitate entry into
the cell, such as heparan sulfate proteoglycans (HSPGs),
integrins, TLRs, neuropilin 1 (NRP1), CD147, CD26, ami-
nopeptidase N, glutamyl aminopeptidase, C-type lectins,
DC-SIGN and L-SIGN.3*3*131713% 1t s important to note
that the precise mechanisms of viral entry and the role
of various receptors are still under investigation, and the
available knowledge is evolving. The SARS-CoV-2 Sp ecto-
domain was shown to interact with cell surface HS through
RBD in the S1 subunit, favouring the RBD open conforma-
tion to facilitate receptor binding. Therefore, HS acts as a
co-receptor priming the Sp for receptor interaction.”?
CD147, in particular, is widely expressed in human
tissues, with higher levels seen primarily in the cardio-
vascular system. It participates in many physiological and
pathological processes due to its numerous interacting
partners.'>® CD147, a versatile transmembrane glycopro-
tein, promotes the activation of MMP, myofibroblast dif-
ferentiation, fibrosis and oxidative stress.'> It is important
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TABLE 1 Summary of the potential effect of the COVID-19 DNA and mRNA vaccine ingredients on the pathophysiology of the serious
adverse events experienced postvaccination.

Spike protein (Sp) Adverse events/site of action Mode of action

CD147 binding Cardiovascular system, immune cells, Activation of MMPs with consequent endothelial glycocalyx

Heparan sulfate
proteoglycan binding

ACE2 interaction

Sp binds to various host
factors and binding
receptors

Lipid nanoparticles (LNPs)

Cytotoxicity

PEGylation

neurological disorders, kidney disease,
pulmonary hypertension, digestive tract,
rheumatoid arthritis, conjunctivitis, skin
health and tumour progression

Breakthrough infections, vascular leakage,
clot formation, neurological function,
cancer

Breakthrough infections, hypertension,
diabetes and cardiovascular disease. Also
affecting the small intestine, neurological
system, kidneys and lungs

Systemically

Adverse events/site of action

Systemically distributed through the
lymph system, blood circulation and
cross biological barriers

Diabetes, neuroinflammation,
cancer promotion and progression,
cardiovascular, lung and liver disease

Acute hypersensitivity, allergy or
anaphylaxis

degradation

Myofibroblast differentiation and fibrosis

Oxidative stress, chronic inflammation mediation and
procoagulant

Facilitate viral infection and internalization of the Sp into
various cells

Metabolism modulation and vascularization induction
Pleiotropic molecular effects in spermatogenesis,
fertilization, neuronal networks and retinal development
Platelet activation and aggregation

Heparan sulfate prime the Sp for receptor interaction
Barrier dysfunction and Sp dissemination

Glycocalyx degradation with shed glycosaminoglycan
fragments and soluble Sp resulting in pathology
Stimulate inflammation by affecting the complement
pathway

Affect the binding and retention of many growth factors,
morphogens, cytokines and chemokines

Regulate cell behaviour and cancer progression

Stimulate MAP4K3/GLK and other signalling molecules,
plus induce RAAS activation

Sp act as endocrine disruptor and may affect fertility and
spermatogenesis

Inflammatory responses, increased oxidative stress,
vasoconstriction, barrier dysfunction, lung injury, fibrosis,
platelet aggregation, hypertrophy of cardiomyocytes and
smooth muscle cells and/or thrombosis

Mediate signalling pathways resulting in pathology
Potent stimulator of pro-inflammatory responses
Result in NETosis

Mode of action

Induction of oxidative stress, with excessive ROS and pro-
inflammatory cytokine release

Complement activation and immunogenicity—toxic to
macrophages

Solubilization, poration, and lysis of the lipid bilayer cell
membrane, causing cell death

Endosome lytic properties with endosomal membrane
destabilization, affecting endosomal signalling
Epithelial and endothelial cell injury and consequent
glycocalyx degradation

NETosis

PEGylation inhibits clearance through detoxification,
extending circulation time, resulting in accumulation of
LNPs and complement activation-related pseudoallergy
Immunogenicity

Oxidative degradation of polyethylene glycol into toxic
products

(Continues)
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TABLE 1 (Continued)
Lipid nanoparticles (LNPs) Adverse events/site of action

Protein coronas Systemically

DNA & mRNA Adverse events/site of action
DNA Systemically
mRNA Genotoxicity and oncogenesis

Neurodegeneration and heart disease

to note that shedding or degradation of the EnGL results
primarily from MMP activity.'>® CD147 is also highly ex-
pressed in immune cells, EnCs in the brain, tissues of the
gastrointestinal tract, platelets, conjunctival tissues, kid-
ney glomerular cells and podocytes, and cardiac pericytes.
Its expression level is up-regulated during pathological
conditions, including several disorders of the central ner-
vous system."”” During inflammation and oxidative stress,
secreted cyclophilins A (CypA) and B (CypB) interact with
CD147 and can facilitate viral infection or cellular inter-
nalization of GVG Sp. For HIV-1 and SARS-CoV to infect
host cells, the viral nucleocapsid protein was found to first
bind to CypA, which then in turn recognizes the CD147
receptor expressed on the surface of host cells.'>

In addition, CD147 was shown to be involved in SARS-
CoV-2 infection of immune cells.””"'*® In the lungs, small
intestine, kidney and heart, ACE2 is expressed, whereas it
isnotfound in innate and adaptive immune cells. However,
CD147 can modulate the abundance of ACE2."** Various
researchers demonstrated that CD147 is critical to pro-
moting SARS-CoV-2 infection through interaction with
the Sp RBD.">>15%1%0 D147 exerts its influence on tissues
through various mechanisms, including: (1) Metabolism
modulation—achieved by binding to monocarboxylate
transporters and the amino acid transporter CD98; (2)

Mode of action

Small molecules and proteins interact with LNP surface,
impacting many physiological processes, biodistribution
and clearance of the LNPs

Resulting in protein aggregation, clustering and fibrillation,
affecting innate immune responses, macrophage
recognition, circulation, biodistribution, cellular uptake,
clearance and thus systemic toxicity of the LNPs
Albumin is consumed by protein corona formation,
negatively impacting the integrity of the glycocalyx, fetal
development and create a procoagulatory phenotype
Protein corona consumed platelets results in
thrombocytopenia

Generating pro-inflammatory immune responses,
altering enzyme activity and causing aggregation of blood
components

Mode of action

Genome integration
Immunotoxic—stimulate release of pro-inflammatory
cytokines

Instability of mRNA molecules

Activate innate immune responses, resulting in gene
expression

Interfering with DNA methylation and gene transcription,
resulting in epigenetic and/or genomic modifications
Possible procoagulant and miRNA dysregulation
Potential frameshifting with off-target effects

permeability regulation—where it controls the levels and
activity of MMPs; (3) vascularization induction—leading
to the synthesis and release of vascular endothelial growth
factor (VEGF), as well as the expression of the VEGF re-
ceptor; and (4) inflammation mediation—involving
leukocyte recruitment and infiltration of leukocytes by in-
teracting with chemokines and adhesion molecules, such
as integrins, selectins and CD44.12

Therefore, it is possible that the GVG Sp binds to CD147
receptors in cardiovascular tissue, in addition to other in-
flammatory ligands, resulting in chronic inflammation of
the cardiomyocytes and degradation of the EnGL through
activation of MMPs. In response to inflammatory stimuli,
up-regulation of CD147 mediates leukocyte infiltration by
binding to E-selectin. Furthermore, the GVG Sp can poten-
tially act as a signalling molecule, affecting glycosylation,
resulting in overexpression of CD147 and consequent car-
diac maladaptive hypertrophy and remodelling, as well as
increased oxidative stress and ferroptosis.'”' Several stud-
ies demonstrated that when SARS-CoV-2 Sp, adminis-
tered to rodents as a soluble molecule or presented with a
carrier, resulted in microvascular damage and induced in-
flammation'®® and haemagglutination.'® CD147 has been
shown to be involved in various cardiovascular diseases,
including atherosclerosis and myocardial infarction, as
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well as kidney disease during both acute ischemic and
chronic fibrotic injuries; and plays a role in pulmonary hy-
pertension, neurological disorders, digestive tract vascular
damage and conjunctivitis.****!%’

Furthermore, CD147 plays pleiotropic molecular roles
in various physiological conditions, such as spermato-
genesis, fertilization, neural networks and retinal devel-
opment. It can result in pathological conditions, such as
tumour progression, inflammatory response, plasmodium
invasion and rheumatoid arthritis, in addition to facilitat-
ing viral infection."”'>> Endocytosis is a vital entry mode
for viral infection, and Zhou et al."! demonstrated that
SARS-CoV-2 enters host cells through CD147-mediated
endocytosis. The assumption can be made that COVID-19
vaccines might cause an up-regulation of CD147 due to
stimulation of immune responses with consequent in-
flammation, although circulating GVG Sp can cause
pathological conditions by further up-regulating CD147
expression and binding to the receptor, possibly entering
host cells through endocytosis. Human platelets express
CD147, and it has been observed that SARS-CoV-2 Sp
causes platelet activation, aggregation, granule release
and expression of soluble P-selectin, as well as platelet ex-
tracellular vesicles.'*1%

The involvement of GVG Sp with the various host
factors and binding receptors can mediate many signal-
ling pathways that contribute to pathology. It has been
shown that SARS-CoV-2 Sp engagement with soluble or
cell membrane-attached ACE2 resulted in depletion of
ACE2 from the cell surface, leading to an imbalance in
the renin-angiotensin system with consequent inflam-
matory responses, increased oxidative stress, vasocon-
striction, barrier dysfunction, lung injury, hypertrophy of
cardiomyocytes and smooth muscle cells and/or thrombo-
sis due to unopposed ACE2 and angiotensin-2-mediated
effects. 3313915 Furthermore, Versteeg et al.'%®* demon-
strated that expression of SARS-CoV Sp can induce endo-
plasmic reticulum stress, consequently triggering innate
immune responses. It has been documented that SARS-
CoV-2 Sp is associated with increased degradation of IxB,
resulting in NF-kB signalling pathway activation.'®* The
GVG Sp is therefore potentially a potent stimulator of
pro-inflammatory processes. More research studies are
needed to establish how isolated circulating GVG Sp could
affect the various receptors and consequent immune and
inflammatory responses and signalling. It is important to
note that the soluble GVG Sp can remain engaged with
cellular receptors and other cofactors for much longer
than the whole coronavirus, with consequent prolonged
stimulation of intracellular signalling.'®

Chuang et al.'® proposed that the Sp-ACE2 interaction
can induce vaccine AEs by stimulating MAP4K3 (also
known as GLK) or other signalling molecules. MAP4K3

may be involved in the pathogenesis of hypertension, dia-
betes and cardiovascular disease.'® It has been suggested
that the shed Sp particles and the GVG Sp can promote pa-
thology via interactions with the Ep- and EnGL. Various
studies demonstrated that isolated full-length Sp and S1
subunit from SARS-CoV-2 could mediate barrier dysfunc-
tion and vascular leak in vivo in an ACE2-independent
manner.>>'%17 Shed viral particles, or Sp, can act as ‘viral
toxins’, mediating barrier dysfunction and promoting Sp
dissemination and AEs.'°*'*® In a mouse model, it has
been observed that administration of Sp into their lungs
resulted in a systemic leak in the spleen and small intes-
tine.*® It seems probable that the binding of Sp to GAGs
will cause GL degradation and that both shed GAG frag-
ments and soluble Sp could lead to severe manifestations
of disease (Figure 2).'°*'%® Even though Biering et al. and
Robles et al.**'>* believe that the levels of GVG Sp circu-
lating in patients following COVID-19 vaccination are
too low (pg/mL) to trigger vascular leak and AEs, more
research in this area is required.'*® With booster vaccina-
tions recommended every 60-90days, higher circulating
levels of GVG Sp can be expected. GVG Sp was no longer
detected in circulation after the second vaccination dose,
presumably because Abs generated by the first vaccination
quickly and effectively removed the small amounts of Sp
reaching circulation.® Nonetheless, it would be a com-
bination of circulating GL fragments, pro-inflammatory
cytokines, ROS and soluble GVG Sp that all contribute to
various AEs (Figure 2), apart from the vaccine adjuvants
and LNPs.

Trougakos et al.* suggested that after vaccination, a cell
can present the GVG Sp and its subunits, or peptide frag-
ments, to the immune system to stimulate responses or
be destroyed via cytotoxic T lymphocytes (T cells). They
believe that the subsequent debris produced and the di-
rect secretion of the transfected cells, including shedding
of the Sp antigen, can release large amounts of the Sp and/
or its subunits and peptide fragments, into circulation.
When LNPs of the COVID-19 mRNA vaccine are injected
into the deltoid muscle, it can affect muscle tissue itself,
the lymphatic system® and the spleen. However, Sp and
its subunits and fragments can also collect in the liver and
other tissues, from which it can enter the circulation and
distribute throughout the body. The GVG Sp was observed
in the plasma of Pfizer and Moderna vaccine recipients,
on Day 1 after the first vaccine injection, confirming the
distribution of the Sp antigen throughout the body.*

Therefore, an extensive range of interactions could be
expected between the soluble free-floating GVG Sp and
its subunits and peptide fragments, the pro-inflammatory
cytokines, and the various binding receptors and other
cofactors in the circulatory system and multiple organs.
The fact that numerous AEs occur far from the injection
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site shows that the GVG Sp, or its production sites are
systemically distributed. It is highly probable that some
LNPs only release their genetic payload once it enters the
systemic circulation. It was proposed that if the vaccine
produces a high amount of Sp at a speed that exceeds
the capacity to produce nAbs, the GVG Sp can spread to
various tissues throughout the body, including the brain,
with the potential of causing inflammation, mitochon-
drial damage and coagulopathies.'® It was demonstrated
that in adenovirus-vectored vaccines, the GVG Sp has the
native-like mimicry of SARS-CoV-2 Sp's receptor-binding
functionality and perfusion structure. It is plausible that
molecular mimicry may occur through additional in-
teractions with other proteins in circulation or even the
presentation to the immune system of Sp antigenic epi-
topes mimicking human proteins.* Sp antigen is believed
to trigger an autoimmune response to the cell itself. At
the same time, it was demonstrated in vitro that some
Abs against SARS-CoV Sp have the potential to mediate
FcyRII-dependent entry into B lymphocytes, thus caus-
ing antibody-dependent enhancement.'” Then, there is
the concern of possible development of anti-idiotype Ab
against vaccination-induced Abs as a means of downreg-
ulation; anti-idiotype Abs—in addition to binding to the
protective SARS-CoV-2 nAbs—can also mirror the Sp it-
self and attach to the various binding receptors, possibly
triggering a wide array of AEs.*

The electrostatic forces of the Ep- and EnGL will also
play a major role in the binding capacity of soluble GVG
Sp to the various receptors. Du Preez et al.** indicated
previously that an undersulfated GL, with overexpression
of 30ST-3B, will facilitate SARS-CoV-2 Sp binding to the
various receptors and negatively impact innate immune
responses. The Wuhan-strain SARS-CoV-2 Sp is hydro-
philic with a grand average hydropathicity (GRAVY) score
of —0.079.”" One could expect that the whole virus would
have a higher negative net GRAVY score,'’*'”* which
will be easier repelled by the negative charge of an intact,
highly sulfated GL. However, soluble GVG Sp and its frag-
ments would have a lower charge potential. Therefore,
they should be able to penetrate the GL easier and have a
higher binding affinity to the various receptors and other
cofactors, stimulating immune responses and signalling
pathways, with consequent degradation of the barrier
functions of the GL.**'%® It should be noted that both posi-
tive values exist in the Sp domain, while other Sp domains
showed negative GRAVY scores.'”" Also, with more Sp
mutations, higher negative GRAVY score values could be
expected,'”* with consequent increase in receptor binding
and/or Ab resistance'** when the GL is compromised. The
GVG Sp-induced degradation of the Ep- and EnGL will
result in the release of various enzymes, GL fragments,
chemoattractants, pro-inflammatory cytokines, ROS and

exposure of adhesion molecules, leading to vascular leak-
age, dissemination of the GVG Sp, clot formation, inflam-
mation and leukocyte infiltration,*3>!>*161,168

These pathological conditions of systemic inflamma-
tion will trigger the release of histones, which can exert
further cytotoxic activity on the EnGL.'”> There is a rea-
sonable probability that GVG Sp and LNPs induce neu-
trophil extracellular traps (NETSs) after vaccination via
a ROS-dependent mechanism,'**'”® apart from GVG Sp
binding to innate immune receptors.*>'”” SARS-CoV-2, as
well as sera from patients with COVID-19, was found to di-
rectly trigger NET formation.'’>*”® Neutrophils from these
patients seemed activated and primed, making them more
sensitive to NET stimuli. This pro-NETotic phenotype can
probably continue for a while after vaccination. NETosis
has been associated with the formation of thrombosis in
patients with vaccine-induced immune thrombotic throm-
bocytopenia (VITT)."* Given that HS plays an important
role in modulating the cytotoxic effects of histones within
NETs and coagulation,36 one can assume that undersulfa-
tion of GAGs would contribute to the hyperinflammatory
response and abnormal coagulopathy seen in vaccines'’®
with serious AEs, which needs to be further investigated.

The GVG Sp appears to be highly toxic on its own.*
Shed GVG Sp has been detected in multiple organs.
There is evidence that the GVG Sp can penetrate ovaries,
testes, brain, spinal cord, nervous system, heart, lungs,
intestines, kidneys and cross the placenta in pregnant
women.*>!2816817 geveral studies observed the GVG Sp
at a considerable distance from the injection site for up
to 6 months after the injection.?**>'7°7*8! This long per-
sistence of the GVG Sp raises the possibility of sustained
inflammation and organ damage. There is a high prob-
ability that the circulating hydrophilic GVG Sp affects
gene expression and can act as an endocrine disruptor.
Fernandes et al.'®* demonstrated through in vivo toxi-
cological studies in zebrafish that isolated recombinant
SARS-CoV-2 Sp caused adverse effects on the liver, kid-
ney, nervous and reproduction system. Ota et al.*’ indi-
cated through three case reports that mRNA COVID-19
vaccines could trigger activation of glomerulonephritis
through vascular En damage, which persisted for several
weeks. Vornicu et al.'® observed severe En swelling, loss
of fenestrations and widening of subendothelial space
in the kidneys after COVID-19 mRNA vaccination.
Therefore, the isolated Sp and its fragments can interact
with HS and various receptors and ligands, mediating
and inhibiting various cell signalling and inflammatory
pathways,*>'® with pathological consequences.

In summary, the GVG Sp can cause AEs in multiple
ways, including (1) signalling and inflammatory cascades;
(2) by triggering vascular leak and En barrier dysfunction;
(3) molecular mimicry with human proteins or as a ligand
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for various receptors and co-receptors; and (4) by produc-
ing NETosis.

3.2 | Breakthrough infections and lung
diseases

Despite high vaccine coverage, various cases were re-
ported of vaccinated people who became infected with
SARS-CoV-2, with breakthrough infections appear-
ing within the first 2 weeks to several months after
injection.131‘184’185

Irrgang et al. found that anti-spike IgG4 Abs and
IgG4-switched memory B lymphocytes increased after
several months postvaccination with the second Pfizer
dose, where the response was boosted after a third vacci-
nation.'®* It has been described that IL-4, together with
IL-10, can switch to IgG4. When these Th2-associated
cytokines are seen to switch to IgG4, it may negatively
impact the anti-inflammatory M2 resolving macrophage
phenotype, thereby skewing the immune response.
Furthermore, IgG4 has a lower potential to mediate
FcyR-dependent secondary effector functions to clear
viral infections, indicating a less effective Ab response.
Current COVID-19 vaccination regimens do not confer
sterilizing protection, as evidenced by the many break-
through infections caused by the Omicron variant.'® An
IgG4 response can be pathogenic or protective, where
IgG4 Abs can lead to cancer and serious illness in sev-
eral autoimmune disorders.'®® More research is needed
to determine the significance of IgG4 Abs in vaccine-
induced immunity and viral clearance.

In a previous review, du Preez et al.*> provided a com-
prehensive overview of the effect that an undersulfated
and degraded lung EpGL would have on susceptibility
to SARS-CoV-2 infection. In addition to the GVG Sp, the
LNPs, genetic material, pro-inflammatory cytokines and
ROS may cause Ep and En degradation,®* as well as
result in depletion of GSH and, consequently, inorganic
sulfate, thereby decreasing sulfation ability.'® Upon in-
flammation and with an undersulfated EpGL, 30ST-3B
would be overexpressed, facilitating the binding of SARS-
CoV-2 Sp to the ACE2 receptors® (Figure 1). Apart from
compromising the EpGL, the first-line of defence, un-
dersulfation also negatively affects innate immune re-
sponses. The bactericidal activity of neutrophils and their
recruitment are influenced by the sulfation pattern of
HS. Inactivation of heparan sulfate 2-O-sulfotransferase
(HS2ST) in neutrophils substantially reduced their bacte-
ricidal activity, increasing susceptibility to systemic infec-
tion.*® Furthermore, GSH depletion has been associated
with impaired immune function, especially affecting T
cells and macrophages.'® This is probably associated

with the high incidence of secondary infections and viral
reactivation in vaccinated individuals. Several cases of
herpes zoster'®” and persistent varicella-zoster viral infec-
tion'® have been reported following COVID-19 mRNA
vaccination.

Lung macrophages, which reside in the intersti-
tium and alveoli, are recruited by inflammatory stim-
uli. Various stimuli, such as TNFoa and IL-1, were
found to affect HS configuration and sulfation in M1
pro-inflammatory macrophages. This resulted in up-
regulation of 30ST-3B, with a consequent increase in
3-O-sulfation and hypoxia, which in turn significantly
reduces the expression of biosynthetic enzymes and the
total HS content,'® thus increasing susceptibility to in-
fection and inflammation. Multiple vaccine platforms
and viral infection were shown to induce SARS-CoV-
specific immune responses that enhanced lung inflam-
mation, following homologous challenge in mice and
African green monkeys.'*°'*? Liu et al. previously iden-
tified epitopes in the Sp that elicited both nAbs and Abs
that enhanced SARS-CoV infection.'"?

Chronic inflammation induced by the vaccine plat-
form and excessive ROS generation may favour the ac-
tivation of M1 macrophages, producing uncontrolled
pro-inflammatory mediators and persistent injury.'**
Indeed, Liu et al.'®® showed that despite markedly re-
duced SARS-CoV titres, anti-S-IgG caused lung injury
during the early stages of infection by abrogating an M2
wound-healing macrophage response and TGF-§3 produc-
tion, while promoting pro-inflammatory cytokine IL-8
and accumulation of MCP1 production and inflamma-
tory M1 macrophages. Li et al.'”® also demonstrated that
Sp-activated platelets skewed monocytes towards the M1
macrophage phenotype, with increased TNFa levels, bac-
terial phagocytic activity and reduced healing capacity.
Furthermore, chronic inflammation alone can alter EnGL
responsiveness through changes in HS composition and
degree of sulfation.'”® Overexpression of 30ST-3B in in-
flamed cells of the compromised lung was indicated to
enhance Sp fusion with cells, even without binding recep-
tors, thus increasing the chances of infection.*

It was observed that the expression of 30ST-3B is
up-regulated in many cell types exposed to inflamma-
tory stimuli, such as monocytes and macrophages, fi-
broblasts and EnCs. Chronic inflammation is therefore
a predisposing factor to viral infection, and more so, the
pro-inflammatory state induced by the entry of viral or
GVG Sp into the cell, will potentially further up-regulate
the expression of 30ST-3B, creating a vicious cycle that
increases infectivity and aggravates the cytokine storm.*
In vivo, SARS-CoV-2 Sp has been shown to activate mac-
rophages, plus it contributed to the induction of acute
lung inflammation in mouse studies. While in transgenic
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mice overexpressing human ACE2, intratracheal instil-
lation of the S1 subunit induced severe acute lung injury
similar to COVID-19, and inflammation.* Biancatelli
et al."” demonstrated that the S1 subunit decreased cul-
tured human pulmonary microvascular transendothelial
resistance (TER), as well as barrier function.

Reactivation of other viruses after COVID-19 vac-
cination, such as varicella-zoster virus,'® can further
be explained by the fact that the GVG Sp promotes a
pro-inflammatory activation profile on the most potent
antigen-presenting cells (APCs), such as the dendritic
cells. Consequent overexpression of 30ST-3B and binding
receptors, such as CD147 and CD4, will facilitate infection
of T helper lymphocytes.* Therefore, infected immune
cells, such as CD4+ T cells, can also be a source of trans-
mission of SARS-CoV-2 throughout the body and result
in lymphopenia. A degraded GL allows immune cells to
spread through the circulatory system, and undersulfated
immune cells will facilitate better binding and spread of
the virus and GVG Sp.'”® The failure of innate immune
mechanisms, such as natural killer cells that typically
control viral infections, is indicated by unregulated viral
replication. Furthermore, viruses, bacteria, microbial
fragments and pro-inflammatory cytokines, such as IL-1p
and TNFq, induce the expression of defensins in various
cells.'”” The immunomodulatory action of defensins can
negatively impact the function of the Ep barrier, thus con-
tributing to viral dissemination and infectivity through
increased uptake of viruses via stromal fibroblasts and re-
cruitment of susceptible target cells.'****

Furthermore, the GVG Sp can activate the Raf/MEK/
ERK signal transduction pathway in cells of the vaccinee.
The ERK1/2 signalling pathway plays a crucial role in
viral replication and triggers the induction of cycloox-
ygenase-2, an inflammatory prostaglandin synthetase.
Increased inflammation will up-regulate 30ST-3B and
expression of the CD147 receptor, resulting in increased
susceptibility to SARS-CoV-2 infection.”*'® Chuang
et al. demonstrated through in vitro and in vivo studies
that the SARS-CoV-2 Sp induces serine/threonine kinase
MAP4K3 overexpression in epithelial cells (EpCs), which
can facilitate infection of otherwise less susceptible cells.
MAP4K3 overexpression in EpCs is positively correlated
with COVID-19 severity.165 Innate immune responses may
also result in excessive caspase-1 activation, resulting in
various pathological conditions, such as increased viral
infection and cardiovascular disease.””!

3.3 | Circulatory problems: Thrombosis,
stroke & vasculitis

Damage to the GL substantially increases intravascular
adhesion of leukocytes and platelets,'®*** while rolling

leukocytes, lymphocytes and platelets along the vessel
wall are supported by an adequate sulfated GL. However,
the binding of chemokines and cytokines to the EnGL
may represent sequestration, inactivation or local concen-
tration for presentation to rolling cells.”® The transcytosis
process depends on HS expression. The nature of these
interactions has been challenging to unravel, as HS is pre-
sent in both EnCs and immune cells, such as leukocytes
and macrophages.'®?** HS's role in regulating the signal-
ling of various inflammatory mediators through their cell
surface receptors is dual functional: they either promote
the ligand interaction with its receptor or inhibit recep-
tor-ligand interactions. For example, the EnGL keep neu-
trophils away from En adhesion molecules.

Moreover, the barrier function of the EnGL can be over-
come through mechanical compression by neutrophils
and LNPs; and with a protein corona traversing capillar-
ies that are smaller than their own diameter®®; or shed-
ding of the EnGL through the action of ROS and released
enzymes.”® Modifying HS sulfation patterns and EnGL
shedding is important in the regulation of leukocyte/neu-
trophil rolling in the arterial system. Furthermore, exper-
iments have shown that EnGL shedding and reduced HS
sulfation can diminish neutrophil arrest.'*® The systemic
knockout of Ndst-1 is lethal in mice, but En inactivation
resulted in an impaired response in various inflammatory
models. Ndst-1-deficient EnCs showed reduced HS sulfa-
tion, reduced IL-8 chemokine presentation on the EnGL
and impaired neutrophil arrest.'”® Another study showed
that altering the 2-O-sulfation of uronic acids in HS can
enhance inflammation and neutrophil recruitment. The
HS2ST enzyme was inactivated in EnCs, resulting in de-
creased 2-O-sulfation, with increased N-sulfation and
6-O-sulfation of HS. In the mutant, the rearrangement of
sulfated sequences resulted in a gain-of-function pheno-
type, characterized by increased inflammation in the ani-
mals. Furthermore, IL-8 exhibited improved binding to the
EnGL, leading to the observation of increased neutrophil
arrest.'% Therefore, the response to inflammatory stimuli,
shear stress or tissue damage can alter the configuration
and degree of HS sulfation, thus regulating immune cell
infiltration. The relevance of the variation of the HS struc-
ture in different tissues extends to chemokine binding.
For example, aortic and venous EnCs exhibit different de-
grees of sulfation in their HS, resulting in the formation
of chemokine binding sites exclusively in postcapillary ve-
nules and small veins where leukocyte migration occurs,
while capillaries and arteries lack such sites."®

During COVID-19, it was observed that an HSA-
nutrient deficit could result in degradation of the EnGL,
which can promote infection across barriers, such as
the gut and BBB.'* Since Cys is a rate-limiting precur-
sor to HSA and inorganic sulfate,'® hypoalbuminemia
may correlate with an undersulfated GL (Figure 1). An
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undersulfated EnGL will result in a hyperinflammatory
response, vascular permeability and the shedding of GL
components, leading to a procoagulant and antifibrino-
lytic state, with eventual multiple organ failure.?® Given
that GVG Sp and LNPs can induce inflammation and
ROS,' one could expect a global depletion of GSH in vac-
cinated individuals.?*®

Furthermore, HSA is the main component in the reg-
ulation of interstitial pressure and is the primary trans-
porter of endogenous and exogenous ligands. It is a large
transport protein that binds to nutrient ligands in the in-
testine and liver and then transports ligands to the small
capillaries and interstitial spaces. HSA has a high binding
affinity for the GVG Sp and LNPs,'*”!**?%7 hypoalbumin-
emia could consequently be expected in COVID-19 vac-
cine recipients.’®*** A mere 20% drop in normal HSA
levels can cause physiological damage in healthy indi-
viduals.'® In addition to HSA depletion due to increased
oxidative stress, oxidative damage can also impair the
binding properties of HSA.

Moreover, the potential binding of the GVG Sp, cy-
tokines, Abs and LNPs to HSA will decrease available
nutrient-HSA binding. HSA carries important ions such as
Ca** and haem, so hypoalbuminemia would exhibit a pro-
coagulatory phenotype and can result in venous thrombo-
embolism.?'%*"! Furthermore, reabsorption of HSA in the
kidney is usually through clathrin-mediated endocytosis,
which thus requires binding of HSA to clathrin. Therefore,
any ligand that competes with clathrin for the binding of
HSA will change this equilibrium and allow HSA to pass
into the urine, further exacerbating hypoalbuminemia.'*®
Moreover, the biomolecular corona formed in LNPs can
activate coagulation cascades'!? (Figure 3). As is expected
in the case of long-COVID, the immune-inflammatory
processes and decreased antioxidant defences in vacci-
nated individuals are accompanied by elevated neutro-
phils, with reduced HSA, GSH and inorganic sulfate.?
This aspect needs further research.

Nonetheless, these oxidative stress pathways will
negatively impact the vascular endothelium and result
in long-term nonresolving inflammatory processes."®’
Various researchers found that the Sp alone can medi-
ate En dysfunction and vascular leak.>*3>17 Likewise,
it was observed that in vitro treatment of vascular EnCs
with plasma of COVID-19 patients induced endotheliopa-
thy,?'**'* and it is plausible that nonstructural proteins of
SARS-CoV-2 might also mediate these effects, apart from
activated platelets, enzymes and cytokines.*'> Therefore,
increased serum levels of syndecan (sdc)1, HS and hyal-
uronan in the acute phase of vaccine-induced AEs,'>%
due to dysregulation of the immune response and conse-
quent EnGL degradation can be expected.’” Seeing that
vaccine recipients with only brief and mild symptoms

showed elevated levels of sdcl, compared to a 2-fold in-
crease in sdcl level in VITT patients, it is clear that some
initial endotheliopathy has developed, which then in-
creased significantly in the VITT group."® As in the case
of severe COVID-19 disease, therefore, increased levels
of soluble En activation markers, such as sdcl, endocan,
selectin and angiopoietin-2, can be expected in vaccine
recipients with severe AEs.**?'* The effect of DNA and
mRNA vaccines on the endothelium warrants further
research. Angiopoietin-2 can induce the EnGL to secrete
heparanase (HPSE), contributing to EnGL shedding and
leading to increased vascular leakage and leukocyte di-
apedesis.”’®*'7 Angiopoietin-2 levels will be positively
associated with increased CRP and D-dimers, the latter
possibly reflecting the link between vaccine-induced coag-
ulopathy and En dysfunction. There may also be a positive
correlation in kidney microthrombosis between elevated
serum creatinine levels and increased D-dimer levels.*®
Endotheliopathy will probably also play an important
role in VITT and thrombosis, while the Sp binds to the
same binding domain than AT in the GL.'*?3!68219220 AT
may also be bound to protein coronas,'® further inhibit-
ing its functionality as an anticoagulant. Several reports
indicated that S1 could directly induce coagulation by
competitive binding to soluble and cellular HS.* The in-
teraction between Sp and HSPGs on the cell membrane
can also disrupt factor H protein, which serves as a neg-
ative regulator of the complement alternative pathway,
triggering an inflammatory response mediated by the
downstream C3-convertase plrotein.219 Therefore, the
full-length GVG Sp could trigger the complement path-
way causing En dysfunction and leading to thrombotic
events,'®® while its interaction with multiple membrane
components could induce thrombocytopenia. Platelets
bound in LNP-protein corona (Figure 3) will also be a
factor in the development of thrombocytopenia. In the
classic heparin-induced thrombocytopenia (HIT) model,
platelet factor 4 (PF4) interacts with EnC HSPGs, thus dis-
placing AT. When PF4 binds to HSPGs, it induces a con-
formational change in PF4, exposing a new antigen. This,
in turn, leads to the generation of IgG auto-Abs against
this complex. The complex formed, consisting of heparin
(HP), PF4 and auto-Abs, subsequently crosslinks numer-
ous FcyRIIa receptors in platelets and monocytes, trigger-
ing intracellular signalling, thromboxane biosynthesis,
as well as platelet activation and aggregation.*'® The acti-
vated platelets degranulate, releasing more PF4 molecules
and procoagulant microparticles in the plasma, leading to
increased generation of thrombin. In addition, anti-PF4
Ab activation of monocytes and EnCs leads to accelerated
thrombin generation through expression of tissue factor.
This can result in hypercoagulation and potentially life-
threatening thrombosis.'***' Cesari et al. demonstrated
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that platelet activation in their VITT patients was not HP
dependent. In some patients with VITT, they found anti-
bodies that cross-react with HP, strongly suggesting con-
traindication to HP treatment.”** It was also shown that
the Sp binds the blood coagulation factor, fibrinogen,
while Sp can enhance fibrin-mediated microglia activa-
tion and induce fibrinogen-dependent lung pathology in
mice.* More studies are needed to evaluate the effect of
the GVG Sp on coagulation.

Leung et al. demonstrated that VITT was induced by
anti-PF4 Abs and mediated by platelet and neutrophil ac-
tivation and NETosis.”*> NETs are highly prothrombotic
in vivo, aggregating with platelets and the activated endo-
thelium to form microthrombi, occluding the vasculature,
and further perpetuating inflammation.'”> Therefore,
there are important interrelations between platelet aggre-
gation, increased neutrophil recruitment, NET formation
and thrombin activation within the microvasculature.
While activated neutrophils and platelets have been
shown to induce NETosis, NET components can further
regulate platelet and neutrophil function. NETosis pro-
motes venous and arterial thrombosis by showing an im-
portant procoagulant and prothrombotic activity. They
can activate platelets and other immune cells, damage
EnCs and activate blood coagulation pathways.”** NETs
further enhance coagulation by providing a scaffold for
platelets, red blood cells, von Willebrand factor (vWf) and
tissue factor. This creates a positive feedback loop, result-
ing in a hypercoagulable state and thrombosis.**' NETosis
is therefore present in patients with active VITT, where
NET levels positively correlate with the severity of AEs."
It has been demonstrated that VITT IgG triggered a sig-
nificant increase in DNA release to form NETs to con-
trol IgG. Confocal microscopy imaging of thrombi from
healthy donors’ whole blood, following treatment with
VITT IgG, confirmed that platelets, fulminant neutrophil
activation and extracellular DNA formed the thrombi.
Data from this study suggested that VITT IgG is primar-
ily responsible for thrombosis and NETosis in vivo.**?
Platelet-neutrophil interactions have been proposed to be
at the centre of the VITT pathology, with platelet-neutro-
phil aggregation, NETosis, plus platelet EV activation and
generation. EV tissue factor and increased D-Dimer levels
would correlate with severity, thrombosis and mortality in
VITT.'®**** Thrombosis and thrombocytopenia in VITT
are two distinct processes, where VITT Abs induce throm-
bocytopenia by binding to platelet FcyRIla.*** Hetland
et al.'’® found a robust negative correlation between the
severity of AEs and platelet counts in COVID-19 vaccines.
In addition, there are negative correlations between in-
flammatory marker levels and platelet counts.

Neutrophils and NETs are present in thrombi in vari-
ous conditions, such as stroke, acute myocardial infarction

and deep vein thrombosis. It was speculated that the ad-
enovirus in DNA vaccines and/or the GVG Sp could have
triggered pronounced inflammatory processes in VITT pa-
tients, including NETosis.****** It was also demonstrated
that purified recombinant SARS-CoV-2 Sp S1 subunits
can elicit unconventional CD147-dependent platelet ac-
tivation, increasing the risk of thrombosis in various or-
gans,'?"160161224 The GVG Sp can play a role in VITT in the
same way,”'’ while binding of S1 to platelet ACE2 recep-
tors triggers its aggregation.* The GVG Sp has the poten-
tial to activate platelets by binding to TLRs, favouring the
occurrence of thrombosis-related cardiovascular events.
Activated platelets interact with circulating monocytes,
stimulating the release of pro-inflammatory cytokines. Li
et al.**® demonstrated that such crosstalk indeed occurred,
where they found that the Sp, both soluble or as part of
a virus envelope, induced platelet activation through en-
gagement with CD42b, in addition to the other receptors,
such as PF4, CD147 and CD26. It was further demon-
strated that the Sp competitively antagonizes vWf binding
to CD42b and interferes with platelet adherence to vVWF.
Platelets actively participate in both haemostasis and im-
mune regulation. Sp-activated platelets induced monocyte
differentiation to a pro-inflammatory phenotype.'*>

Activated platelets degranulate and express various
membrane receptors, enabling them to bind through P
selectin to circulating leukocytes. This induces monocyte
differentiation towards a pro-inflammatory phenotype,
featuring a higher expression of CD86, HLA-DR and IL-
1. VITT and acute deep vein thrombosis, resulting
from inflammatory responses, platelet activation and ag-
gregation, was reported after injections of both DNA and
mRNA COVID-19 vaccines.'6>168211:221-226 1t wag found
that both the AstraZeneca and Pfizer vaccines could elicit
anti-PF4 Ab production, even in recipients without clin-
ical manifestation of thrombosis.* To abolish VITT IgG-
induced thrombosis, one would need to inhibit platelet
and neutrophil activation by blocking FcyRIIa, or NETosis
and aggregates. It seems probable that an undersulfated
GL in VITT will impede in vivo modulation of these
pathological events.”” Moreover, extracellular RNA has
been established to promote the activation of coagulation
proteases. At the same time, different forms of eukaryotic
and prokaryotic RNA serve as promoters of pathological
blood coagulation and thrombus formation.**” More re-
search is needed to establish the possible role of injected
mRNA in promoting thrombosis.

3.4 | Myocarditis

8,146,150,228,229 230

Myocarditis in adolescents
as well as pericarditis or myopericarditis,

and elderly,
8,89,231,232 has

51017 SUOLULLOD SAIER.1D 3|1 jdde 3y Aq pauieB 8.2 ORI YO 95N J0 S9N 10y AXeiq 1 SUIIUO AB]1A IO (SUO1HIPUGO-PUB-SLLLBILLIOY" B I AZR.q]fpujuoy/SdL) SUOMIPUOD P S 13U 39S *[1202/80/8T] Uo Ariq1T8UIluO /B1IM ‘Aeiqi Usiueq eA0Y Ad 96T 99/TTTT'0T/I0p/W0Y" A8 | Aeiq1jou U0/ SdIY WoJy PAPEOjUMOQ ‘0 ‘ZIEZS9ET



du PREEZ ET AL.

Wl LEY 19 of 48

been clinically diagnosed in many recipients of the vari-
ous COVID-19 vaccines. Yu et al.*** observed impaired
LV and RV myocardial deformation and persistent late
gadolinium enhancement (LGE) in a subset of patients
vaccinated against COVID-19 up to 1-year follow-up. The
growing evidence indicates a worse prognosis with altered
myocardial deformation and LGE in patients with myo-
carditis. Morz and Barmada et al.**® demonstrated an
up-regulation in inflammatory cytokines and the corre-
sponding lymphocytes with tissue damage capacity after
COVID-19 mRNA vaccination. This suggests a cytokine-
dependent pathology that may also be accompanied by
myeloid cell-associated cardiac fibrosis. They noted that
these findings were different from previously reported
forms of vaccine-associated myocarditis, where the pa-
thologies were largely eosinophilic.*’

CD147 has been shown to be involved in the develop-
ment and progression of various cardiovascular diseases,
such as atherosclerosis, ischemic cardiomyopathy and
heart failure.>>*** Since CD147 is expressed in both car-
diomyocytes and EnCs, the binding of GVG Sp to these
receptors'®®** may correlate with haemodynamic in-
stability and cardiovascular abnormalities observed in
COVID-19 vaccinees. Zhong et al.'>> demonstrated that in
response to pressure overload, overexpression of cardiac
CD147 promoted cardiac maladaptive hypertrophy and
remodelling, along with increased oxidative stress and
ferroptosis. Apart from overexpressed CD147 resulting in
oxidative stress, it is known that LNPs can also generate
excessive ROS.®! It has been well established that ROS
overproduction, resulting in oxidative stress, is a crucial
trigger during the pathogenesis of cardiac hypertrophy
and the transition to heart failure. In cardiovascular dis-
ease, excessive ROS has been shown to cause protein de-
naturation, lipid peroxidation, DNA damage and eventual
cell death.®> ROS can directly impair the heart's contrac-
tile function by oxidizing proteins central to excitation-
contraction coupling. Lipid peroxidation will result in
membrane destabilization and ferroptotic cell death, a
pathological process associated with ROS-induced heart
tissue injury.'*>**

Sp involvement is irrefutable, because acute pericar-
ditis and myocarditis, or myopericarditis, were also ob-
served in predominantly men and young people with
COVID-19.2%*¢ In fact, adolescents who developed myo-
carditis after mRNA vaccination had markedly higher
levels of full-length free Sp in their plasma, compared
to asymptomatic vaccinated control subjects without de-
tectable free Sp."* In a postmortem study, Mdrz observed
Sp-induced En damage in the heart and brain, with ad-
hering plasma coagulates/fibrin clots present on the En
surface. The patient received one Astra-Zeneca and two
Pfizer mRNA vaccinations, with no evidence of previous

SARS-CoV-2 infection.> Avolio et al.'®® found that the
shed Sp was more abundant than the whole SARS-CoV-2
particles in COVID-19 patients’ serum. It was observed
that shed Sp disrupted human cardiac pericyte func-
tion and triggered increased production of pro-apoptotic
factors in pericytes, resulting in the death of EnCs. The
GVG Sp can, therefore, act as a ligand to induce nonin-
fective cellular stress. In support of this, administration
of the Sp promoted dysfunction of human EnCs through
increased expression of vWf and CD147.*'*° Expressed
CD147 promotes MMP activation and will consequently
result in considerable EnGL degradation, further exacer-
bating inflammatory responses, ROS generation and vas-
cular NO abnormalities, resulting in a procoagulant and
pro-inflammatory phenotype of the endothelium.'****’
Dursun et al. reported that COVID-19 vaccine-induced
acute pericarditis exhibited pleuritic chest pain, pericardial
effusion, increased white blood cell count and increased
CRP levels, while serum troponin levels were around nor-
mal.?*® However, unlike classical stages of acute pericar-
ditis ECG, vaccinated patients showed no ECG changes.
Elevated D-dimer and serum troponin levels were also ob-
served in vaccine-induced acute myocarditis and myoperi-
carditis. Their ECG findings were correlated with those
who have stage 1 acute pericarditis.*® These conditions
were typically observed within 3 days after mainly the sec-
ond dose of an mRNA vaccine, and mainly in younger and
male adults. The prevalence of young adults has been de-
fined in various studies.”********* Oxidative stress was the
underlying cause of these conditions, with low NO levels
indicating the inflammatory and procoagulant state in
mRNA vaccine-induced heart inflammation.**

It is well established that the pathogenesis of viral myo-
carditis is caused by direct virus-mediated injury and/or
a toxin, and indirect damage through secondary immune
and autoimmune responses, as well as influenced by the
oxidative state of the host.**"*** It is very plausible that
the GVG Sp and LNPs would stimulate the release of pro-
inflammatory cytokines, but that an undersulfated and
degraded GL will not be able to modulate the inflamma-
tory response,'® which, together with oxidative stress,
will contribute to the pathogenesis of cardiomyopathy.***
Salah and Mehta speculated that high expression of ACE2
in the heart will facilitate the interaction between HS and
the Sp, resulting in HS consumption that will reduce AT
activation and anti-inflammatory activity. This may result
in endothelialitis, subsequent En injury and intracardiac
thrombus formation.??%*** However, the fact that the GVG
Sp would likely bind to the same binding domain than AT
will probably have a greater effect on inflammation and
coagulation, in addition to the role of the other Sp-binding
receptors, and the increase in oxidative stress. Avolio
et al.'® demonstrated that the CD147 receptor, not ACE2,
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directs Sp signalling in cardiac pericytes. The expression
of CD147 was shown to be increased in a variety of car-
diovascular diseases, which could serve as compensation
for any age or disease-related reductions in ACE2 during
viral infections.***

Nonetheless, Lehmann et al.’** pointed out that binding
of the GVG Sp to ACE2 receptors can induce RAAS acti-
vation, particularly an increase in angiotensin-2, resulting
in angiotensin-2/NA-dependent acute vasoconstriction,
and the progression of inflammatory, fibrotic and throm-
botic processes. A histopathological examination of two
teenage boys who died suddenly after their second Pfizer
vaccination revealed stress cardiomyopathy caused by
catecholamine-induced myocardial injury, which differed
from typical findings of myocarditis."**'*° It is plausible
that the catecholamines were not deactivated by sulfation.

The coxsackievirus-adenovirus receptor, an adhe-
sion molecule located predominantly in the heart, is re-
quired for viral entry into different cell types. The young
adult heart has relatively high levels of coxsackievirus-
adenovirus receptors, which may partially explain the
increased susceptibility of young adults to myocardi-
tis.”*! However, seeing that COVID-19 vaccine-induced
myocarditis predominantly affects young males,®!%%41:245
other factors would probably play a role. Animal studies
indicated that sex differences in TLR signalling play an
essential role in differential susceptibility to viral-induced
myocarditis.’*' Sex differences in innate immune re-
sponses have been observed, where an M1 activating im-
mune response was favoured in male mice, compared to
an M2 resolving response in female mice.'**

Various studies found an increase in oxidative stress in
patients with dilated cardiomyopathic heart failure, with
a decrease in circulating GSH concentrations.'® The fact
that myocarditis accounts for 5%-12% of sudden deaths of
young athletes'®* indicates that oxidative stress is proba-
bly the main etiological factor underlying myocarditis (see
Section 3.5). Research has revealed that males are more
susceptible to oxidative stress and possess a lower antiox-
idant capacity compared to females. Some researchers at-
tribute these sex differences to oestrogen, which is known
to facilitate the activation of antioxidant systems and reg-
ulate the expression and activity of various antioxidant
enzymes.'® However, it is important to note that high tes-
tosterone levels, alcohol, smoking, recreational drugs and
certain medications will deplete GSH, altering the redox
status.”*** During puberty, there is an approximate 20-
fold increase in endogenous testosterone in males, while
there is only a modest increase in females. Testosterone
has been shown to decrease cystathione f-synthase (CBS)
activity (Figure 1), decrease GSH concentrations and in-
crease susceptibility to oxidative stress.”*’ In steroidogenic
cells, one can expect ROS production to be particularly

high, since steroid hydroxylations by cytochrome P450 en-
zymes produce ROS,?® in addition to the mitochondrial
electron transport chain.

Furthermore, after biosynthesis, hydrophobic steroids
undergo sulfation to facilitate their circulatory transit.
Mueller et al. gave a good account of steroid sulfation and
desulfation.?*® Most dihydroepiandrosterone (DHEA) is
stored as DHEA sulfate, the inactive form, but with de-
creased levels of inorganic sulfate, DHEA is preferentially
converted to testosterone instead of DHEA sulfate.**’
Moreover, higher testosterone levels will not only deplete
GSH. It may also reduce available inorganic sulfate lev-
els, exacerbating inorganic sulfate deficiency and altering
EnGL sulfation (Figure 1) and steroid hormone sulfation.
Therefore, high testosterone levels can stimulate pro-
inflammatory cytokines in the vasculature and generate
ROS in vascular smooth muscle cells, consequently de-
creasing NO bioavailability, resulting in increased blood
pressure and renal dysfunction, activation of vasoconstric-
tor signalling pathways and increased vasoconstriction.**®

Men have been shown to have lower plasma levels of
reduced GSH than women, making them more susceptible
to oxidative stress and inflammation.**® Both epidemio-
logical and immunological evidence indicate that steroids
can influence the pathogenesis of various chronic inflam-
matory diseases. However, research on the cardiovascu-
lar actions of testosterone is still controversial, showing
its effects as protective to deleterious. Although numer-
ous studies have shown an increased cardiovascular risk
and mortality with testosterone deficiency, testosterone
therapy has been verified to attenuate cardiovascular risk
factors and cardiovascular outcomes.’*® Moreover, high
oxidative stress has been associated with adverse testos-
terone effects, while low oxidative stress is associated with
cardioprotective testosterone effects.'®

It seems that testosterone's positive or negative effects
on the heart may depend on the testosterone levels and
whether or not testosterone is acting through a nuclear
receptor. However, the role of testosterone in the reg-
ulation of oxidative stress in cardiomyocytes is far from
clear, where testosterone can act as an antioxidant or
pro-oxidant.'® Indeed, a positive correlation has been ob-
served between GSH and testosterone levels. Depletion of
the intracellular GSH pool, both in young and old cells,
has been found to significantly decrease testosterone pro-
duction.” It is also important to consider the regulation
of sulfatases (SULFs) by inflammatory mediators, since
sex steroids play a role in immune function and inflam-
matory processes, where SULF activity is often dysregu-
lated and associated with inflammation. For example, in
the vascular smooth muscle cells from patients with ath-
erosclerosis, SULF expression was found to be higher in
females with mild atherosclerotic changes, compared to
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severe disease and in male aortas. However, the counter-
part of SULF, oestrogen sulfotransferase (SULT-1E1), was
lower in women with severe disease, indicating the im-
portance of the SULT/SULF ratio in the local regulation
of steroid formation in states of inflammatory diseases.***

Rienks et al. revealed that the extracellular matrix
(ECM) protein, SPARC, regulates inflammation, vascular
permeability and consequently mortality in a murine cox-
sackievirus B3-induced myocarditis model by maintaining
the EnGL's integrity (Figure 1).** They found that a lack
of SPARC resulted in a loss of GL integrity and consequent
barrier function. These alterations in GL integrity resulted
in increased cardiac inflammation and mortality during
viral myocarditis. They also noted a relationship between
SPARC and HS, seeing that both could restore EnGL integ-
rity.*** SPARC probably serves as a Cys donor for oxidation
to both GSH and inorganic sulfate (Figure 1). The degree
of GAG sulfation in the GL regulates inflammation, vascu-
lar permeability, coagulation and mechanotransduction.
Depleted levels of GSH, through increased inflammation
and oxidative stress, would also mean impaired availabil-
ity of inorganic sulfate, resulting in an undersulfated and
degraded GL. In animal studies, taurine deficiency, with
Cys as a precursor to taurine (Figure 1), was also shown to
result in cardiomyopathy.®**

GVG Sp and LNPs can activate platelets and gener-
ate ROS, in addition to the pro-inflammatory response,
resulting in degradation of the EnGL and coronary ar-
tery lesions.”®* In this model, the overexpression of pro-
inflammatory cytokines, such as TNFa and IFNy, may
induce cellular hypertrophy and myocardial damage and
possibly causes ventricular remodelling. Since TNFa« is a
potent inducer of NO and ROS, this inflammatory process
can promote cardiac injury, myocardial fibrosis and elec-
trical remodelling, through a hyperoxidative state.?*>**
As the EnGL degrades, the protective barrier of the EnCs
is compromised, leading to increased interstitial oedema,
capillary leakage and a higher risk of multiple organ fail-
ure. Furthermore, loss of ability to sense shear stress in
the endothelium results in NO release, leading to systemic
vasodilation.***

In addition to the function of MMPs in ECM remod-
elling, a critical process involved in the progression of
myocarditis to dilated cardiomyopathy, they are also im-
portant modulators of the antiviral immune response. A
novel role for MMP-12 in innate immunity is mediating
the secretion of IFNa, by transcriptional regulation of
NE-kB inhibition.*** Pro-inflammatory cytokines can also
lead to aberrant mitochondrial metabolism of cardiomyo-
cytes, further causing heart dysfunction.”' EnGL degra-
dation and prolonged and increased activity of MMPs and
HPSE would be predominant in systemic vascular leak-
age.”* Circulating HS can act as DAMP ligands, binding

to TLR4 and increasing the release of pro-inflammatory
cytokines. Furthermore, serum HS fragments can induce
mitochondrial dysfunction in cardiomyocytes in a TLR4-
dependent manner.**® Degradation of the GL will also re-
sult in shedding of endogenous protective enzymes, such
as extracellular SOD, which will increase oxidative stress
in the endothelium.?***>’

It is also probable that overexpression of IFN in the
heart can lead to autoimmune cardiomyopathy. TREX1-
deficient mice were shown to develop lethal lympho-
cytic inflammatory myocarditis, with progressive dilated
cardiomyopathy and circulatory failure, in addition to
pathological changes in lymphoid organs, consistent with
autoimmune cardiomyopathy.”®® Fung et al.**' gave a
good overview of the immunopathogenesis of viral myo-
carditis. A persistent and excessive immune response after
vaccination can have harmful consequences, contributing
to the progression of myocarditis and dilated cardiomy-
opathy.**! Yonker et al.'? observed significantly elevated
levels of IL-8, IL-6, TNFa, IL-10, IFNy and IL-1, with
lower IL-4 levels, in adolescents and young adults pre-
senting with myocarditis after COVID-19 mRNA vaccina-
tion, compared to healthy vaccinated control subjects. The
same Th1-polarized immune response was observed with
DNA vaccine (AstraZeneca) immune .':1ss.ays,128 and in a
Pfizer COVID-19 vaccination trial.”***° This cytokine and
chemokine environment represents a pro-inflammatory
M1 macrophage phenotype, with Th1 IFNy potentiating
the macrophage microbicidal activity, thus promoting an-
tigen presentation. When the levels of Th2-associated cy-
tokines IL-4 are low, the anti-inflammatory macrophage
phenotype M2 is not activated to stimulate myocardial
healing, or to blunt the inflammatory response.'”* IFNy-
producing CD4+ T cells producing IFN were shown to
predominate in autoimmune myocarditis in animal and
human subjects, where IFNy-overexpressing mice de-
veloped spontaneous cardiac inflammation.”®® Barmada
et al. observed an elevation in sCD163, which is indica-
tive of cardiac macrophage activation after mRNA vacci-
nation. Released damage-associated signals and elevated
pro-inflammatory cytokine IL-18, as seen in their patient
cohort, can induce recruitment of monocytes and macro-
phages. This may exacerbate inflammation in myocarditis
and/or result in cardiac tissue fibrosis, as was observed in
patients with prominent T cell and macrophage infiltra-
tion of cardiac tissue.* It is known that IL-1 may enhance
atherogenesis and exacerbate left ventricular dysfunction
by contributing to En damage.***

Furthermore, Yonker et al. discovered that total leuko-
cytes, especially neutrophils, were significantly elevated
in the postvaccine myocarditis cohort. On the contrary,
platelet counts were found to decrease in vaccinated con-
trol subjects.'”” These profiles probably suggest innate
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inflammatory activation in individuals who developed
postvaccine myocarditis. At the same time, adaptive im-
munity and T-cell responses in the postvaccine myocardi-
tis cohort were found to be indistinguishable from those of
asymptomatic age-matched vaccinated control subjects.
However, the circulating free GVG Sp antigen evaded Ab
recognition in postvaccine myocarditis.12

In addition, dysregulation of specific miRNAs has been
demonstrated to contribute to developing viral myocardi-
tis, without altering viral replication dynamics.**' It seems
probable that mRNA vaccines can up-regulate miRNAs,
which can induce myocarditis.'** Furthermore, increasing
evidence shows that aberrant accumulation of protein ag-
gregates is important in the development of human heart
diseases.”*! LNPs are known to aggregate to form protein
coronas,”®* cross the BBB and potentially induce strokes
and/or cerebral haemorrhages and damage the endothe-
lium of the heart muscle.?®®> However, Nahab et al. found
that the AstraZeneca DNA vaccine was associated with a
higher risk of early postvaccination ischemic stroke, com-
pared to the Pfizer mRNA vaccine.”®* It is clear that other
factors are also at play, apart from the presence of LNPs.

Vaccine-induced cardiac injury can, therefore, be re-
lated to direct cardiomyocyte damage, coronary plaque
destabilization, cytokine inflammatory responses, oxi-
dative stress, EnGL dysfunction and degradation, and
intracoronary microthrombi formation.>>%%?% In fact, in
addition to inflammation, increased ROS production has
been directly associated with various critical character-
istics of the pathophysiology of cardiovascular disease.
These include vascular remodelling, En dysfunction, al-
tered vasoconstrictor responses, increased inflammation
and modifications of the ECM. All these factors play a
significant role in the development and progression of
cardiovascular diseases.**® It is important to note that
heart failure is the final mutual outcome of various pri-
mary cardiovascular diseases, regardless of the underly-
ing nature of cardiomyopathy. The long-term prognosis
of myocarditis in vaccinated individuals remains unclear,
and it seems probable that accidental IV administration
of the COVID-19 mRNA vaccines would increase the risk
of myopericarditis.***> Longitudinal studies of COVID-19-
vaccinated patients with myocarditis and myopericarditis
will be necessary to better evaluate long-term risks. Given
the low turnover rate of cardiomyocytes (only 1% annu-
ally, even at the age of 25) and the fact that fewer than 50%
of cardiomyocytes are exchanged during a normal human
lifespan, it becomes evident that loss of cardiomyocytes
cannot be adequately replenished in a timely manner. As a
result, such loss would be detrimental to maintaining car-
diac function. The limited regenerative capacity of cardio-
myocytes poses challenges for the heart's ability to recover
from significant damage or injury.**> More research is

needed to fully understand the complex interplay between
oxidative stress, cytokine-driven immune responses and
vaccine-induced myocarditis.

3.5 | Adverse events in athletes
Myocarditis is ranked as the third leading cause of sud-
den cardiac death in competitive athletes by the American
College of Cardiology.**"**® More research is required on
the reported increased incidence of sudden death among
athletes after COVID-19 vaccination.?***¢7

Because athletes often use testosterone and other ana-
bolic steroids to improve performance, lower levels of GSH
and reduced redox status could be expected. Nonmedical
testosterone has been shown to increase arterial blood
pressure and induce left ventricular hypertrophy and myo-
cardial infarction, due to coronary vasospasm or throm-
bosis.?*® Low levels of GSH have also been established
to cause increased inflammation, microglial activation,
neuroinflammation and expression of NO,**’ indicating
an increase in ROS. Interestingly, steroid SULFs are regu-
lated by hypoxic conditions and inflammatory mediators,
such as TNFa. Once intracellular, steroid conjugates can
be desulfated during intense exercise,” increasing levels
of active steroid metabolites.**®

Tostes et al. reported that testosterone also induces
mitochondria-associated ROS generation and apoptosis
in vascular smooth muscle cells, by activating androgen
receptors.** Bille et al.”®® indicated a female/male ratio of
1/9 for sudden cardiac death among athletes. Sen et al.*®®
studied the association between exercise intensity and
related oxidative stress in healthy young men. A 50% de-
crease in blood GSH levels was observed in moderately
trained men during the first 15min of exercise.?®®

Notably, Cys will favour GSH synthesis during exercise-
induced oxidative stress. A higher demand for GSH will
have an inhibitory effect on inorganic sulfate synthesis.
Besides, stress and hypoxic states favour H,S as an ‘emer-
gency’ substrate for ATP production, while Cys also serves
as a precursor for mitochondrial production of H,S.'**
Under hypoxic conditions, it can be assumed that there
will be an increased demand for H,S as an electron donor.
This increased demand may result in the inhibition of in-
organic sulfate and GSH synthesis, with Cys acting as the
rate-limiting factor (Figure 1). This will affect the degree of
HS sulfation and negatively impact GSH levels. Moreover,
mediated by hypoxic conditions, increases in intracellular
H,S and ROS levels can synergistically induce membrane
depolarization. This may result in increased levels of cy-
tosolic Ca** ions, leading to activation of the endoplasmic
reticulum stress response involved in initiating apopto-
sis'® (Figure 2). Furthermore, prolonged hypoxia states
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increase the expression of tissue factors in monocytes and
macrophages, as well as pulmonary vascular EnCs, which
can lead to increased fibrin accumulation and consequent
pulmonary thrombosis.*

As discussed in this review, various factors will lead
to a lower redox status in recipients of DNA and mRNA
vaccines. Coupled with the increased oxidative stress gen-
erated during exercise, it is very likely that these events
are the perfect storm to result in a heart attack. Increased
inflammation and oxidative stress would increase blood
viscosity and decrease myocardial perfusion and supply.
This would be further exacerbated through dehydration
during exercise. In addition, electrolyte imbalances would
also affect the renin-angiotensin-aldosterone system,
possibly contributing to congestion and worsening of
heart failure."*

3.6 | Immunocompromised patients and
autoimmune diseases

Many researchers have looked at the possible link be-
tween SARS-CoV-2 and autoimmunity, such as vasculitis.
Various autoimmune diseases have been reported after
COVID-19 vaccination, such as alopecia areata, Guillain-
Barre syndrome (GBS), autoimmune-induced hepatitis,
acute autoimmune transverse myelitis, idiopathic throm-
bocytopenic purpura, arthritis and Ab-associated anti-
neutrophil cytoplasmic vasculitis.'*****”° This raises the
question of whether COVID-19 vaccines might affect the
immune system in the same way as SARS-CoV-2 infection.

Serum from severely ill patients with COVID-19 re-
vealed high autoAb titres, such as antinuclear antibody
(ANA), lupus anticoagulant and antineutrophil cyto-
plasm antibodies (ANCA).”"*7* In plasma isolated from
patients with autoimmune conditions, myeloperoxidase
(MPO) and NOX2 were associated with the formation of
NET. Enhanced NETosis was associated with the onset
of acute and chronic inflammation and autoimmune
disorders. At the same time, the presence of auto-Abs in-
hibited NET degradation, increasing the risk of immune-
mediated thrombosis.'”” Although patients affected by
immune suppression and immune-mediated inflamma-
tory disorders are encouraged to be vaccinated, there ex-
ists a paradox, since it is known that COVID-19 vaccines
can trigger disease relapse in patients with an established
immune-mediated inflammatory disorder. In patients pre-
disposed to develop an autoimmune disease, vaccination
can potentially shift the balance towards self-reaction,
leading to the initiation or exacerbation of autoimmune
responses.”’>*’* Ironically, the initial Pfizer and Moderna
vaccine trials excluded immunocompromised patients,
including those on immunosuppressive medications, and

patients with autoimmune conditions. It has been estab-
lished that autoimmune reactivity in response to viral an-
tigens, after infection or vaccination, can be easily derived
in various tissues from cross-reaction with human tissue
antigens that share sequence homology with the virus.
Therefore, it seems probable that the GVG Sp is a potential
epitopic target for biomimicry-induced autoimmunologi-
cal processes.275 Therefore, chronic autoimmune disease
can result from excessive Ab production in response to
the vaccine. Vaccines have been associated with chronic
immune-mediated disorders that can develop years after
vaccination.?**?’® Moreover, IL-17 cytokines, induced by
cationic LNPs, will further exacerbate the autoimmune
milieu.®

Itis also important to note that the CDO-catalysed step,
which is responsible for producing the majority of inor-
ganic sulfate in vivo from Clys, is rate-limiting (Figure 1).
Pro-inflammatory cytokines, such as IL-1p, TNFa and
TGFp, downregulate CDO at the mRNA level. Therefore,
higher plasma levels of Cys could be expected, compared
to inorganic sulfate concentrations, after vaccination. A
lower degree of HS sulfation is evident in various autoim-
mune and inflammatory health conditions.'®*

3.7 | Immune-mediated hepatitis
Chow et al.””” documented case reports of individuals who
developed autoimmune hepatitis after COVID-19 vac-
cination. The latency time to onset of the first symptoms
ranged from as little as 2 days to 2 months after receiving
the first dose of the COVID-19 vaccine. After vaccination,
various factors and pathways would cause immune-
mediated hepatitis, fibrosis and liver necrosis, such as
increased pro-inflammatory cytokines, oxidative stress,”’®
circulating LNPs and soluble GAGs in circulation due to
EnGL damage. Soluble plasma GAGs are cleared from cir-
culation through clearance receptors present in sinusoidal
liver EnCs, including stabilin-2. However, in instances of
liver cell injury or infection, such as in the case of hepatitis,
there may be an associated increase in circulating GAGs
due to impaired clearance mechanisms.** Decreased sul-
fation and degradation of the EnGL would be a substan-
tial contributing factor in mediating hepatitis. SAAs play a
crucial role in liver health, where increased ROS or lower
levels of GSH, and the other SAAs, will also contribute to
hepatitis. The loss of the BPNT1 gene in mice was shown
to lead to impaired protein synthesis, which subsequently
resulted in impaired liver function and reduced levels of
HSA >

LNPs can be cleared in a healthy liver through effi-
cient immune responses, for example, by the convectional
APCs in the liver, such as dendritic cells, B lymphocytes
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and Kupfer cells. Additionally, sinusoidal EnCs from the
liver, liver stellate cells and hepatocytes can act as APCs.
However, sustained expression of GVG Sp-related anti-
gens after vaccination, as well as increased levels of GAG
fragments and LNPs, can skew the immune response to
autoimmune tissue damage, such as through IL-17,% as
observed in cases of autoimmune hepatitis after COVID-19
vaccination.*?”?”? It has been shown that PEG-lipids with
short lipid tails can desorb from LNPs, allowing the NPs to
adsorb apolipoprotein E, which will cause LNPs to endog-
enously target liver hepatocytes.®® nAb responses elicited
after SARS-CoV vaccination have been shown to induce
harmful immune responses that result in liver damage.**
Fernandes et al.'®* injected SARS-CoV-2 rSp into zebrafish
and observed mild lobular infiltration of lymphocytes in
the liver, centrilobular sinusoidal dilation, patchy necro-
sis, moderate microvesicular steatosis and mild inflamma-
tory infiltrates in the hepatic lobule and the portal tract.'®

3.8 | Neurological symptoms

Various factors, such as genetics, oxidative stress, neuro-
inflammation, mitochondrial damage and abnormal pro-
tein folding, underlie neurodegenerative disease. Multiple
researchers have linked vaccine adjuvants, such as alu-
minium salts, to neurological symptoms.''® Even though
neurotoxicity due to LNPs crossing the BBB is possible,”
one could more likely expect decreased levels of inorganic
sulfate as an underlying etiological factor. Sulfate plays an
important role in the brain as a vital component of the
GL and ECM,>* and as a deactivator of neurotransmitters,
such as serotonin, dopamine, DHEA and pregnenolone.
HSPGs play a crucial role in neurite outgrowth and con-
nectivity between neurons and their target cells. They have
been shown to be vital in processes such as neurogenesis,
axonal guidance and synapse development.**’ The deple-
tion of available inorganic sulfate due to vaccine-induced
systemic inflammation and oxidative stress will lead to
many neurological conditions. Reduced serotonin sulfa-
tion would impair its inactivation, resulting in increased
serotonin levels or serotonin syndrome. Increased seroto-
nin levels would not only affect daily brain functioning,
it can also cause focal seizures and motor changes, and
a loss of oxytocin-containing cells in the hypothalamus,
leading to deficits in oxytocin processing with behavioural
consequences.

In addition, sulfated steroids, such as DHEA sulfate,
have been shown to inhibit GABAa receptors in the ner-
vous system. Decreased sulfate levels might result in anx-
iety, depression, apathy, insomnia and mood disorders.
Impaired N-methyl-D-aspartate (NMDA)-dependent long-
term potentiation (LTP) was associated with sodium and

potassium current perturbations. Sulfate deficiency might
alter memory, since the glycoprotein, N-sdc, enables LTP
by transmitting signals from ligands binding to attached
HSPGs.?* Sulfated galactocerebroside, known as sulfatide,
is a critical myelin lipid component™ and is involved in
various biological processes, such as cell growth, inflam-
mation and immune modulation, protein trafficking, sig-
nal transduction, cell-cell recognition, neuronal plasticity
and cell morphogenesis.”®! Mice lacking sulfatides display
disorganized paranodes and a deficiency in septate-like
junctions, which results in a notable decrease in nerve con-
duction velocity as a functional outcome. The absence of
galactolipid sulfation in the Golgi apparatus appears to dis-
rupt the selective association of NDK/Nm23 proteins with
myelin-destined vesicles, leading to random and unregu-
lated associations of NDK/Nm23 with any myelin-destined
vesicle. This dysregulation of protein association may con-
tribute to the observed impairment in nerve conduction.?*
Substantial depletion (92mol%) of sulfatide mass was
found in the temporal grey matter of subjects with a clini-
cal dementia rating of 0.5, relative to controls.?"

Although excessive production and release of pro-
inflammatory chemokines and cytokines after vacci-
nation, particularly TNF-a, IL-1 and IL-6, can trigger
neuropsychiatric symptoms in itself, they also negatively
affect thiamine metabolism.”®®> A deficiency in sulfur-
containing thiamine has been linked to many neuropsy-
chiatric adverse effects.

As in long-COVID, activated immune-inflammatory
and oxidative and nitrosative stress pathways (IO&NS)
can underlie the physiological symptoms of COVID-19
vaccine-induced chronic fatigue syndrome, major depres-
sion and generalized anxiety disorder,'®****%> which are
characterized by activated IO&NS pathways. Therefore,
the combination of toxicity from neuro-oxidative stress
and diminished antioxidant defences can result in in-
creased neurotoxicity, ultimately leading to physiological
symptoms.*'* Although Selvakumar et al. did not find a
correlation of long-COVID conditions between infected
and noninfected individuals, their vaccination status was
not taken into account as a possible contributing factor to
symptoms.**® Jangnin et al.*®” observed a high incidence
of long-COVID after extensive distribution of vaccines
and antiviral therapies.

An overactive immune system is known to contrib-
ute to the emergence or aggravation of neurodegenera-
tive diseases, such as Alzheimer's disease, haemorrhagic
and ischemic strokes, multiple sclerosis (MS) and GBS,
as well as neuropsychiatric symptoms, as cytokines
can pass through the BBB and cause acute necrotizing
encephalopathy.*!*%%7

In research studies, S1 has been shown to act as a
pathogen-associated molecular pattern that induces
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viral infection-independent neuroinflammation through
the participation of pattern recognition receptor en-
gagernent.“’l“’169 Furthermore, Sp, S1 of SARS-CoV-2
and mRNA-LNPs can cross the BBB.****>!%2 Fernandes
et al.'® showed that rSp generated an inflammatory pro-
cess in the brain, with a severe influx of mononuclear
cells. This profile was correlated with acute necrotizing
and transverse myelitis related to SARS-CoV-2 infection,
confirming the neurotropism of the Sp.'*2

Furthermore, circulating shed HS fragments can bind
to AP fibrils and a-Synuclein, thereby competitively in-
hibiting FGF2-mediated neuroprotection and promote
protein aggregation.”® Moreover, binding of the GVG Sp
and LNPs to HSA can affect HSA transport across the BBB,
resulting in increased plaque formation and impaired
amyloid processing, thus affecting cognition.'****® Low
HSA, LNPs and increased expression of MPO could also
exacerbate capillary leak in the brain,® which can lead
to thrombosis, severe encephalitis, toxic encephalopathy
and rupture.®® The brain contains the largest number of
plasmalogens,?®" which are susceptible to MPO-induced
oxidative stress.””® Plasmalogen deficiency in cerebral
grey matter can be directly related to neurodegenera-
tion and loss of synapses, as a decrease in plasmalogen
levels can induce membrane instability.”®' Therefore, by
enriching neuronal cell membranes with plasmalogens,
neuronal function can be improved through modulation
of nonlamellar membrane transformations and synaptic
plasticity.**! A weak BBB, through HSA depletion and
MPO-induced oxidative stress, may promote secondary
infection, leading to meningitis.”>***!** Xu et al.*® il-
lustrated that loss of brain EnC integrity and decreased
host defence mediated by NETs would synergistically
render HS2ST-deficient mice susceptible to infection.
Furthermore, inactivation of HS2ST in neutrophils affects
the binding capacity of histones, which are vital antimi-
crobial molecules and structural components of NETs,
revealing a novel function of HS in neutrophil NET biol-
ogy.*® There exists a direct relationship between HSA defi-
ciency and decreased sulfation.'®*

Neuronal cells are highly susceptible to exposure to
hypochlorous acid (HOCI) induced by MPO, which can
release pro-inflammatory cytokines, exacerbating neu-
roinflammation. HOCI also chlorinates the amine and
catechol groups of dopamine, which may selectively kill
dopaminergic neurons by inhibiting mitochondrial respi-
ration.” It is important to note that endosomes provide a
specialized NGF/TrkA platform for sustained signalling,
which is required for neuronal survival.”” The influence
of ionized LNPs on these signalling pathways through
membrane and endosomal destabilization needs further
investigation.

Additionally, various Sp-binding receptors are ex-
pressed in the brain, such as ACE2, ephrin (Eph) receptors
and ligands, NRP-1, TMPRSS2 and CD147. The GVG Sp,
LNPs and activated IO&NS pathways can result in neu-
roinflammatory processes characterized by neuron demy-
elination, hyperactivation of microglia and stimulation of
astrocytes. Specific pathological changes and symptoms
vary depending on the type of cell and the brain region
affected. Symptoms related to pituitary gland involvement
may include headaches and vision changes, while dam-
age to the cerebellum and cortex can cause neurological
symptoms such as ataxia, dizziness and impaired con-
sciousness.>*”?> Numerous cases of acute, temporary,
unilateral peripheral facial paralysis or Bell's palsy have
been reported as AE.>"285:29%:294

Various reports of Creutzfeldt-Jakob disease have been
reported after COVID-19 vaccination,”®> with symptoms
of rapidly progressive dementia, ataxia, pyramidal symp-
toms and akinetic mutism. It has been hypothesized that
neuroinflammatory transcriptional signatures and loss of
homeostatic identities in astrocytes could be triggered by
systemic inflammatory mediators, which can contribute
to neurodegeneration and prion disease pathogenesis.*’

Abramczyk et al.'** observed alterations in the reduc-
tion—oxidation pathways associated with Cytochrome c
in glial cells of astrocytes, astrocytoma and glioblastoma,
incubated with the Pfizer mRNA vaccine, similar to that
of brain cancer. Glioblastoma multiforme is a common
primary human brain cancer characterized by resistance
to apoptosis by chemotherapeutic treatment and radia-
tion. The pathogenesis of glioblastoma multiforme is as-
sociated with pro-inflammatory cytokines, chemokines
and Eph receptors. Elevated levels of pro-inflammatory
cytokines, such as IL-1§ and TNFa, were found in patients
with glioblastoma multiforme.**® It would be important
not to misdiagnose glioblastoma multiforme for acute dis-
seminated encephalomyelitis, which could also be associ-
ated with COVID-19 vaccination.**®

Reports of acute ischemic stroke cases have emerged
after COVID-19 vaccination.'****?*?*7 There is a long-
standing association between systemic infections, inflam-
mation and acute ischemic stroke. TLRs can also indirectly
damage neurons, resulting in ischemic stroke. EphA2 re-
ceptors have also been shown to play an important role in
ischemic stroke pathology.*”’

GBS is a commonly reported vaccine-induced
AE.1428529%8300 GRg i5 Jinked to the release of cytokines
and chemokines induced by vaccination, resulting in
damage to the central and peripheral nervous system.>’ It
is the most common acquired inflammatory neuropathy,
characterized by demyelination or damage to the myelin
sheath and/or axonopathy. It has been speculated that the
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GVG Sp can lead to an autoimmune response due to its
structural similarities with the ganglioside components of
peripheral nerves, thereby damaging them. This hypothe-
sis was confirmed by detecting auto-Abs against ganglio-
sides in the case of tetraparesis.'*

The fact that these neurodegenerative diseases were
also observed in COVID-19 patients®”?%*#%? indicates the
involvement of the Sp with various receptors, with conse-
quent neuroinflammation. Postvaccination, the integrity
of the BBB is probably weakened by LNPs, thereby exac-
erbating neuroinflammation. Increased immunogenicity
can also be expected due to mistranslation of mRNA and
protein misfolding, which has been linked to neurodegen-
eration®”! and heart disease.’*

The acute neurological presentation of Churg-Strauss
syndrome following COVID-19 vaccination has been re-
ported.?***"33% Although the cause-and-effect association
with COVID-19 vaccines still needs to be proven with
certainty, clinicians should suspect autoimmune-related
polyneuritis in patients with asthma and rhinosinusitis,
who present with sensorimotor symptoms and poor bal-
ance after COVID-19 vaccination.*****

There exists an important relationship between HS and
Churg-Strauss syndrome. It is known that the EnGL is
damaged during inflammatory conditions, with very high
levels of extracellular histones and pro-inflammatory cy-
tokines, resulting in the degradation and shedding of HS
and other GL fragments. However, En-expressed HS plays
arole in allergic airway inflammation, such as asthma and
sinusitis, by mediating the interaction of leukocytes with
the vascular endothelium, thus regulating the recruitment
of inflammatory cells to the airways, as well as sequester-
ing and modulating the activity of pro-inflammatory cy-
tokines.>** In Churg-Strauss syndrome, the membrane
basic protein (MBP) and eosinophil cationic protein (ECP)
block HS, thereby inhibiting HS binding to AT, and con-
sequently facilitate coagulation through unhindered fac-
tor X activation and thrombin generation. Furthermore,
MBP/ECP stimulates platelets to release PF4, which also
blocks HS with subsequent coagulation,’® and an attenu-
ated ability to regulate inflammation. It is clear that after
COVID-19 vaccination, these overstimulated immune-
mediated pathways would intensify, with less available HS
to modulate the response.

3.9 | Endocrine disorders, reproductive
health and pregnancy

During pregnancy, the blood-placental barrier mediates
the exchange of nutrients and metabolic waste prod-
ucts, exerts vital metabolic functions, and secretes hor-
mones and is therefore crucial in maintaining pregnancy.

There is a relationship between SAAs, where an HSA
deficiency will affect Cys and taurine levels (Figure 1)."%*
Interestingly, lower birth weight and length of infants
have been linked to maternal taurine deficiency. Since it
has been found that increased size of newborns at birth
may be protective against the development of coronary
heart disease, taurine or HSA deficiency in utero, and in
infants, can lead to the progression of coronary heart dis-
ease in adulthood. This link between taurine deficiency
and cardiac pathologies was demonstrated in taurine
transporter (TauT) gene knockout mice.”®! However, a
taurine deficiency would also mean lower levels of inor-
ganic sulfate, where undersulfation is also associated with
cardiovascular diseases.” Infants also depend on taurine
for their neurodevelopment.”' Therefore, diets that lack
adequate SAAs and taurine levels, compounded by in-
creased oxidative stress after vaccination, can adversely
affect the fetus's health status during pregnancy and lead
to an increased risk of pathologies in adulthood.

Due to chronic inflammation and oxidative stress, a
reduced supply of inorganic sulfate will also impair sero-
tonin sulfation, affecting its inactivation. Increased levels
of serotonin are one of the most consistently replicated
biochemical findings in autism. Increased serotonin lev-
els would affect day-to-day brain functioning, as well as
the development and outgrowth of serotonergic neurons,
resulting in a loss of serotonin terminals.”*’ Increased lev-
els of maternal serotonin may result in developmental and
behavioural changes in children born from COVID-19-
vaccinated mothers. Erdogan et al. concluded from their
rat study that the Pfizer mRNA vaccine induced autism-
like behaviours in the male offspring of vaccinated dams,
while the WNT and BDNF pathways were impacted in
both genders.**

In addition, spontaneous abortions and stillbirths
could be expected when the mother has been vacci-
nated,”®*"” either recently before, or during preg-
nancy.*”® The movement of nutrient-rich HSA across the
placental barrier is controlled by clathrin-enabled endo-
cytosis. The binding of LNPs and GVG Sp to HSA will
reduce the amount of HSA and clathrin binding sites
available. This blocks HSA from entering the cell and
passing the placental barrier. Therefore, less HSA and
nutrients would be available to support healthy growth
and development of the fetus and negatively impact the
mother.'*® Furthermore, various studies demonstrated
the achievability of designing LNPs as a platform for
the delivery of mRNA to the placenta.”***° The potential
effect of LNPs and mRNA on the fetus post-COVID-19
vaccination needs more research.

Although normal Ep and fetal tissues have low ex-
pression of CD147, it is significantly up-regulated
during inflammatory conditions."” Therefore, there
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is a possibility that the GVG Sp might directly impact
the fetus by binding to CD147. More research is needed
to test the immunogenicity, reactogenicity and safety
of COVID-19 vaccines during pregnancy,”™ especially
since pregnant and lactating women were excluded
from the initial COVID-19 vaccine trials.*'! In recipients
of the Pfizer vaccine, a wide-ranging immune response
was observed, including stimulation of nAb responses,
stimulation of CD4+ cells and expansion of effector
memory CD8+ T cells in men and nonpregnant women.
However, the extent of a comparable immunological
response in pregnant women remains uncertain. This
uncertainty is concerning, since favourable perinatal
outcomes are highly dependent on enhanced helper T-
cell type 2 and regulatory T-cell activity, combined with
reduced Thl responses. Alterations in CD4+ T-cell re-
sponses during pregnancy have been associated with
unfavourable pregnancy outcomes, such as preterm
birth and fetal loss. Furthermore, there is some evi-
dence to suggest that infants born to mothers with vari-
ant CD4+4 T-cell responses may experience long-term
adverse consequences.”’

Various research studies have clarified that HSPGs me-
diate the retention of many growth factors and morpho-
gens. Carboxyl and sulfate groups of the GL contribute
to the negative charge essential for interactions between
HS and basic amino acid residues in proteins, such as
VEGF-A.>" In a murine study, it has been demonstrated
that dramatically reduced HS sulfation resulted in brain
malformations and skeletal defects. This implicates the
importance of highly sulfated NS domains for growth
factor-binding.*'* Macrophage subsets express differential
expression of HS, where reparative M2 macrophages will
bind more 2-O-sulfation-dependent FGF-2, augmenting
the FGF-2-dependent proliferation of a target cell."® This
suggests that aberrant regulation of leukocyte HS sulfa-
tion during chronic inflammation and oxidative stress,
possibly induced by GVG Sp and LNPs, can result in ex-
cessive or inhibited growth factor activity, consequently
affecting fetal development. Activated macrophages me-
diate both CD4+ and CD8+ T-cell responses. Therefore,
HS and its sulfation configuration are essential for cell
growth, tissue homeostasis, immune response and embry-
onic development.?®

There is evidence that ACE2 is expressed during all
stages of follicle maturation in the ovary and endome-
trium.'® This increases the likelihood that the GVG Sp
affects female and male fertility, with evidence that the
Sp can distribute to the ovaries and testes.***'* The dra-
matic increase in oxidative stress and pro-inflammatory
cytokines after COVID-19 vaccination, such as IL-6,'7®
can damage spermatozoa. Increased levels of ROS and
MPO can damage the sperm membrane®***** and induce

apoptosis, thus affecting sperm quality, sperm function,
and motility. If spermatogenesis is affected, it could even-
tually result in nonfunctional sperm, thus negatively
impacting male reproductive health.*> Furthermore,
Sertoli and Leydig cells are involved in spermatogenesis
and express ACE2, TMPRSS2 and CD147.'> There have
also been observations that COVID-19 vaccines caused
a decrease in fertility in women.*'® The effect that bind-
ing of overexpressed CD147 and GVG Sp might have on
spermatogenesis and fertilization would require further
research. However, in vitro fertilization studies would not
truly reflect the in vivo environment after vaccination.
Although the proposed mechanism for infertility is the
presumed similarity between GVG Sp and syncytin-1,*"’
the up-regulation of Sp-binding receptors, and the effect
of steroid sulfation and desulfation, would likely better
explain the variation in fertility issues experienced by
COVID-19 vaccinated women.

Furthermore, the reduced availability of inorganic
sulfate for steroid sulfation could explain the menstrual
irregularities and breakthrough bleeding observed in fe-
male COVID-19 vaccine recipients.””'*?* During the
female menstrual cycle, SULF activity peaks in endo-
metrial tissue at the early secretory stage and then de-
clines afterwards. The pro-inflammatory cytokine IL-1f
increases during the secretory phase of menstruation,
which is known to suppress SULF mRNA and activity
in human endometrial stromal cells.?*® This implies
that IL-1p may control the endometrium steroid micro-
environment by reducing oestrogen's biological action.
However, both hypoxic conditions and inflammatory
mediators, such as TNFa and IL-6, also influence ste-
roid SULFs. SULF suppression results in decreased
maternal-fetal oestrogen during pregnancy due to lack
of SULF activity in the placenta. This deficiency of oes-
trogen would result in delayed progression of parturi-
tion. Furthermore, it has been found that SULF activity
is increased by up to 12 times in endometrial cancer tis-
sue.”*® Sulfation and desulfation play an essential role
in balancing the availability of free steroid hormones
near target sites and would affect menstruation regular-
ity. The rate-limiting step for all sulfation reactions is
the availability of active sulfate in the form of sulfonu-
cleotide 3-phosphoadenosine 5-phosphosulfate (PAPS),
where the responsible PAPS synthases are known to be
fragile enzymes.*>** Furthermore, cellular efflux of con-
jugated steroids occurs through the multidrug-resistant
protein (MRP) of ABC transporters. Estrone sulfate and
DHEA sulfate transport depend on GSH availability, but
whether or not the sulfated steroid requires GSH for
MRP-mediated efflux remains unresolved.**®

Since oestrogen is inactivated by sulfation, aberrant
sulfation after vaccination would be a leading factor
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predisposing to cerebral venous sinus thrombosis (CVST).
At the same time, thromboembolic complications asso-
ciated with the GVG Sp can lead to fetal vascular malp-
erfusion or fetal vascular thrombosis.**' In vascular
development, peptide growth factors of the VEGF and
platelet-derived growth factor (PDGF) families have been
found to regulate the migration and proliferation of EnCs
and support mural cells, such as pericytes (PC) and vas-
cular smooth muscle cells. HS and the overall degree of
sulfation play a vital role in PDGF binding and are re-
sponsible for PC recruitment and attachment in vascular
development.*?

The fact that insulin could easily interact with LNPs
through electrostatic interactions**>*** may partly explain
the high incidence of hyperglycaemic crisis and type 2
diabetes after COVID-19 vaccination, apart from the de-
structive effect that oxidative stress, endoplasmic reticu-
lum stress and low inorganic sulfate levels would have on
beta cells in pancreatic islet.?*03238:3247326 1t j5 a]s0 neces-
sary to note that HSA transports both insulin and glucose.
With more HSA being consumed during inflammation
and oxidative stress, and through binding to LNPs, a re-
duced concentration of insulin delivered to the liver could
be expected, with the subsequent elevation of glucose.
Moreover, this excess glucose can result in HSA glycosyla-
tion, which further reduces the binding sites. A reduction
in HSA is associated with type 2 diabetes.”®® Glycated HSA
also suppresses glucose-induced insulin secretion by alter-
ing glucose metabolism and result in pancreatic beta cell
dysfunction through autophagy. Glycated HSA has a very
high binding affinity; therefore, with more GVG Sp and
LNPs binding to glycated HSA, glucose and insulin metab-
olism would be further impaired.’'*®

Type 1 diabetes have also been reported as an AE after
vaccination.****%” Seen that high levels of sulfated HS pro-
tect beta cells in the pancreatic islet from ROS and cell
death, this protective antiapoptotic effect would be neu-
tralized during excessive oxidative stress and inflamma-
tion postvaccination, when nearby autoreactive T cells
secrete HPSE that subsequently degrade HS, leading to
the onset of Type 1 diabetes.”***

3.10 | Cutaneous adverse effects

Various skin reactions were reported in recipients of
the COVID-19 vaccines, such as petechiae, bruising or
haemorrhages, haemangiomas, rashes, increased spider
veins, redness, blue discoloration and/or peeling of the
skin.'**32832% These symptoms mainly occurred associated
with other complex symptoms and were usually clustered.
The onset of symptoms occurred from 12h to 9 weeks after
vaccination, where Moderna elicited the most frequent re-
actions, followed by AstraZeneca and Pfizer.'*°

A case of Darier's disease flare-up was reported after
the first dose of the AstraZeneca vaccine. Darier's dis-
ease is a rare autosomal dominantly inherited dermatosis,
which is due to a mutation in the ATP2A2 gene on chro-
mosome 12q23-24 that encodes SERCA2, a Ca®*" ATPase
in the sarcoplasmic/endoplasmic reticulum.**® Other
mechanisms would also be involved, since an antigen-
immune-mediated flare was observed after vaccination.
Syndecan (sdc) HSPGs regulate cytosolic Ca** to control
cell adhesion, actin cytoskeleton and junction formation.
This is achieved by controlling transient receptor poten-
tial canonical (TRPC) channels. An sdc-TRPC4 complex
in epidermal keratinocytes controls adhesion, adherent
junction composition and early differentiation. HSPGs,
and the degree of HS sulfation, will determine the bind-
ing of growth factors, morphogens, cytokines and chemo-
kines, which synergistically combine with high-affinity
receptors to affect intracellular signalling.**' It is yet again
clear that sulfation would affect practically every cellular
process. A shift in sulfur metabolism, due to inflammation
and oxidative stress, would exacerbate underlying genetic
vulnerabilities, such as Darier's disease.

CD147 has been observed to increase with age in the
skin.”** Chronic inflammation after COVID-19 vaccination
would increase the expression of CD147. When CD147 in-
duce extracellular MMPs, an excessive breakdown of con-
nective tissue components in the skin could be expected.
Even though, most of the skin eruptions following vaccina-
tion could be drug-induced, where vaccination might have
a synergistic immunologic effect on an adverse drug reac-
tion. Most drugs used to treat inflammatory conditions,
such as corticosteroids, nonsteroidal anti-inflammatory
drugs (NSAIDs), acetaminophen and aspirin, inhibit, or
are metabolized through sulfation and can thus negatively
impact GAG sulfation in the epidermis. The consequent
vascular inflammation would alter the regulation of kerat-
inocyte proliferation, with increased epidermal differenti-
ation. Toxic epidermal necrolysis (TEN) is often observed
when using acetaminophen, which is associated with
inorganic sulfate depletion.23 However, Sano et al. found
the S1 protein in vascular EnCs and eccrine glands in the
deep dermis of a woman with confluent maculopapular
erythema, which presented after the second dose of the
Pfizer vaccine. Therefore, the involvement of Sp in per-
sistent skin inflammation is clear, which remained in this
case for at least 100 days after vaccination.**

3.11 | Ocular adverse events

Li et al.*** established that after the first and second doses
of mRNA vaccines, these vaccinated individuals had a sig-
nificantly increased risk of retinal vascular occlusion up to
2years after vaccination. Sp-induced disruption of retinal
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capillary barrier function is similar to En damage fol-
lowing intravitreal administration of vascular En growth
factor, a prominent vascular hyperpermeability factor
in diabetic retinopathy, an inflammatory eye disease.'>*
The visual disturbances observed after vaccination®****?
could be caused by microvascular supply disturbances of
the retina and/or optical centre, after exposure to GVG
Sp and cytokines. Acute visual disturbances with retinal
haemorrhages have been reported in association with
AstraZeneca vaccination and autoimmune thrombocyto-
penia.'* Given that a diet deficient in taurine is associated
with the development of retinopathy,®! there is a clear
link between the availability of SAAs, inorganic sulfate,
inflammation, vascular and ocular health.

3.12 | Cancer

Carcinogenesis is a complex multifactorial and multistage
process that consists of initiation, promotion and progres-
sion. Very specific interactions between tumour cells and
the microenvironment are required during cancer devel-
opment, growth, metastasis and invasion. The GL is the
critical effector of the tumour cell surface and microen-
vironment.”®® Therefore, the GL is involved in tumour
growth and metastasis, by interacting with growth factors,
growth factor receptors and cytokines. Chronic inflam-
mation is underlying many cancers and is a driving force
for metastasis of cancer cells. HSPGs play a central role in
regulating cell behaviour and cancer progression, where
the pattern and degree of GAG sulfation are strongly re-
lated to the type of cancer, the tumour regulatory effect
and the level of differentiation.”

Significant alteration of steroid metabolism in many
endocrine-related cancers is a well-established fact.
Evidence suggests that sulfation pathways are down-
regulated,** while SULF activity is up-regulated in numer-
ous tumours.**® This leads to a preference for desulfation
and subsequent conversion of steroids into more active
metabolites.**® Many factors can contribute to dysregu-
lation of sulfation pathways.”* However, after COVID-19
vaccination, the chronic pro-inflammatory response and
oxidative stress would probably be the main factors in-
fluencing sulfation. Furthermore, various factors, in ad-
dition to pro-inflammatory cytokines, would affect the
signalling of SULTs and SULFs.**® There has been an in-
crease in breast and lung cancer cases reported to VAERS,
while pancreatic, ovarian and bladder cancers were di-
rectly linked to COVID-19 vaccines.***** One could also
expect more cancers related to sarcoma, leukaemia and
lymphoma after COVID-19 vaccination.”****”-3> The fact
that the c-Mpl-JAK?2 pathway is activated after COVID-19
vaccination,”*® may be another underlying factor in the
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pathogenesis of leukaemia,**’ myelofibrosis®*® and my-
eloproliferative neoplasms®*® observed in COVID-19 vac-
cine recipients.

The fact that the ECM protein SPARC regulates tumour
development, progression and angiogenesis®* confirms
the vital role of SAAs in cancer. SPARC would serve as a
Cys donor to maintain homeostatic balance in the sulfa-
tion pathways (Figure 1). SPARC, which is overexpressed
during cancer, exhibits anticancer properties and modu-
lates inflammatory processes.>*’

CD147, a stimulator of MMP1 production in fibro-
blasts, plays well-characterized roles in tumour metas-
tasis, angiogenesis and chemoresistance. Glycosylation
plays a key role in regulating the pro-hypertrophic ef-
fects of CD147, such as the involvement of glycosylated
CD147 in tumour metastasis.'>> While Sp can initiate gene
expression changes, it might also affect glycosylation.
Liu et al. showed" that CyPA and CD147 have higher
levels of expression in pancreatic cancer tissues. Seeing
that this proliferation of pancreatic cancer cells can be
effectively blocked by a CD147 Ab,'** confirms that the
GVG Sp might be a driving factor in carcinogenesis, by
up-regulating the expression of CD147. It has also been
shown that the SARS-CoV-2 Sp increases GLK levels in
EpCs. GLK overexpression in lung EpCs is correlated
with human lung cancer recurrence and poor prognosis,
while up-regulated expression of GLK has been observed
in human liver cancer. Chuang et al. demonstrated that
GLK directly phosphorylates the cytoskeleton regulator
IQGAP1, leading to increased cell migration and promot-
ing cancer metastasis.'®

The formation of NETs has been observed in some
cancers.””* DNA enriched with 8-hydroxy deoxyguano-
sine in NET was shown to bind to a transmembrane pro-
tein such as Cdc25 in tumour cells, thereby facilitating
its potential for metastasis. NETs induce the production
of pro-inflammatory cytokines, which in turn stimulate
more NETosis, leading to a cascading ‘feedback’ effect.
Elevated levels of NETs were found in metastatic lesions.
NETosis and increased NET formation were shown to
precede cancer metastasis, with the NET-DNA complex
acting as a chemotactic factor, attracting metastatic cells
to new sites. Enhanced NET formation compromises the
adaptive immune system. Additionally, NETs coat tumour
cells, providing protection against cytotoxic lymphocytes
and/or natural Kkiller cells that typically target tumour
cells. Mounting evidence suggests that neutrophils pro-
mote tumour growth and metastatic progression through
the formation of NETs.'”” The formation of new tumours
and the aggravation of existing malignancies can thus be
expected postvaccination.

Cationic LNP-RNAs cause TLR4 activation, which can
lead to cancer promotion and progression, and increase
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angiogenesis. TLR4 activation results in triggering the
NF-kB pathway, chemoresistance in ovarian cancer, and
increased migration and invasion of both colon and pan-
creatic cancer cells.®’ Although PEG is relatively stable
at physiological pH, it is collapsible under acidic condi-
tions because of the protonation of imidazole groups.
Therefore, PEG-coated ionizable LNPs will be destabilized
in the acidic tumoural environment,*' thus amplifying
the cytotoxic effects of these NPs.

It has also been postulated that COVID-19 vaccines
may interfere with the target cell genome, activating
oncogenes and/or deactivating anticarcinogenic gene
sequences, thus increasing cancer risks.>**33 In fact,
numerous studies documented how dysregulation of
miRNA is associated with cancer development and me-
tastasis.”>* Cancer pathogenesis is related to several bio-
molecular processes, for example, genomic alterations,
transcription of oncogenic factors and inhibition of re-
pressor transcription, such as P53 and hypoxia.>>> The
p53 tumour suppressor molecule is responsible for the
regulation of various basic cell signalling processes in on-
cogenesis, where coronavirus infection is known to alter
the activity of p53 or its upstream and downstream pro-
teins.**® Miyashita et al. suggested that miR-92a-2-5p and
miR-148a play a role in immune responses to components
of the Pfizer vaccine. Of particular interest, miR-92a-2-5p
has been identified as a biomarker for small cell lung can-
cer.”” However, the direct induction of miRNA dysregu-
lation resulting from mRNA vaccines can potentially have
significant consequences for millions of people, includ-
ing children, by triggering the pathogenesis of tumours
or cancer relapses. This warrants careful monitoring and
further investigation to ensure vaccine safety and efficacy
in the long term.

3.13 | Variation in adverse events

Many factors would contribute to the variation in AEs
experienced by COVID-19 vaccine recipients. Although
most recipients of the COVID-19 vaccines seem to have
experienced no adverse effects, more and more reports of
severe AEs, and death, due to COVID-19 vaccination are
being confirmed.”

The sulfation pathways important role in disease
prevention has been highlighted in this review and else-
where.? In this review, the effect of COVID-19 vaccines
on inorganic sulfate depletion has been discussed, where
the pathological consequences would be aggravated by
existing underlying degradation of the GL, sulfate defi-
ciency or dysregulated sulfation pathways. The various
epigenetic and genetic factors that influence sulfation
should be considered, such as dietary factors/nutritional

deficiencies, ageing, male sex, comorbidity, genetic vari-
ation, inflammatory insults and oxidative stress, and vari-
ous environmental factors.”> Where adolescents are more
inclined to drink, smoke and use recreational drugs that
will deplete GSH and sulfate, athletes’ overall health and
redox status will determine their response to vaccination.
Impaired redox homeostasis and associated oxidative
stress seem critical to explaining increased susceptibility
to AE postvaccination.

AEs will also be aggravated by specific medications
taken by the vaccine recipient. Drugs used to treat AEs,
such as fever, inflammation and pain, can exacerbate the
cytotoxicity of vaccines and immune responses, leading to
more severe AEs. In an AstraZeneca study, higher rates
of solicited reactogenicity were observed in vaccinated
participants who received acetaminophen prophylaxis,
compared to the no acetaminophen control group.'?®
Medications that require sulfation for their metabolism,
such as acetaminophen and NSAIDs, can deplete the
liver PAPS pool within 2h.**® This will negatively im-
pact sulfation of the GL, and other molecules, due to the
decreased levels of available inorganic sulfate or PAPS
(Figure 1),”***® exacerbating AEs.

Various factors will affect NP biomolecular corona for-
mation and, therefore, the in vivo behaviour of NPs. Apart
from the NP composition, the biofluid protein concentra-
tion, temperature, pH, ionic strength and disease state of
the host are all critical parameters that can influence the
corona and, therefore, the subsequent nano-bio interac-
tions."**"? This will potentially have important implica-
tions for LNP clearance, tissue accumulation, efficacy and
effect on AEs. Since proprietary ingredients and manufac-
turing processes are being used in the COVID-19 vaccines,
it is difficult to match the outcome with the physicochem-
ical properties of NPs, and other possible ingredients in
DNA and mRNA vaccines. As intellectual property or
proprietary novel functional excipients, graphene-based
NPs could be functionalized with the complex multilay-
ered polymeric lipid delivery structures®'%2>*3 ysed in
COVID-19 vaccines. 017364

4 | DIAGNOSTIC TESTS

Through anecdotal evidence, a high tendency of
Helicobacter pylori infection has been noted among
COVID-19 vaccinated individuals. Physicians should,
therefore, consider screening for this pathogen, espe-
cially if gut-related symptoms accompany AEs. Since sul-
fated gastrin stimulate acid secretion from gastric fistulas
and pepsin production,*® undersulfation and low stom-
ach acid levels could predispose to Helicobacter pylori
infection.
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Markers of NETosis and serum NET levels will be
elevated levels of cell-free DNA, MPO or MPO-DNA,
citrullinated histone H3 (CitH3) and neutrophil elas-
tase.'”>"17723 MPO forms HOCI, by catalysing the reac-
tion of H,0, with chloride ions (C17), to facilitate the
destruction of pathogens. HOCI rapidly depletes GSH.
Glutathione sulfonamide is a sensitive marker for MPO-
mediated reactions, while 3-chlorotyrosine and elevated
levels of chlorinated aldehydes would indicate HOCI-
mediated damage.?®® Teo et al. found that MPO levels
and activity in plasma from COVID-19 patients were
significantly correlated with soluble EnGL fragments,
and by inhibiting MPO activity in vitro, sdcl shedding
was reduced.’®® Cell-free DNA levels should show a
strong correlation with other markers of inflammation,
such as CRP and D-dimer.'”” Furthermore, higher levels
of double-stranded DNA and calprotectin could be ex-
pected, together with DNA histone, granular enzymes
and sdcl, as found in VITT."

High serum levels of CRP would indicate macro-
phage activation syndrome, while high serum levels of
cytokines, especially IL-6, would be another biomarker
of inflammation and robust immune response. Increased
activity of pro-oxidative enzymes, such as MPO, points
to oxidative stress, while oxidative damage is linked to
higher production of malondialdehyde (MDA), protein
carbonyls and advanced protein oxidation products.
Elevated levels of NO metabolites and IgM directed to
nitroso neoepitope adducts indicate increased nitrosa-
tive stress. The lower total antioxidant capacity (TAC) of
plasma is reflected in reduced levels of glutathione perox-
idase (GPx), zinc, GSH and HZS.212 Increased serum trans-
aminase levels are correlated with low systemic toxicity.
AST and ALT levels were elevated in mice treated with
PEG-LNP.*® To identify EnGL damage, elevated plasma
levels of sdcl, P-selectin, endocan, chondroitin sulfate,
hyaluronan, HS and vWf would be useful markers, 2624
as in the case of COVID-19.*'7 It is well established
that elevated plasma concentrations of GL degradation
fragments are associated with a poor prognosis in severe
disease."®

Furthermore, increased levels of fibrinogen, fibrin
degradation products, D-dimer, vWf and soluble throm-
bomodulin indicate En injury. At the same time, im-
paired En function would be related to apoptotic ECs,
decreased NO availability and vascular leakage.”> When
sdc4 is expressed by EnCs, smooth muscle cells and car-
diac myocytes, there is a positive correlation between in-
creased serum levels of sdc4 and heart failure, making it
a possible useful biomarker for predicting cardiovascular
events. Sdc4 expression and shedding would increase due
to mechanical stress on the walls of the vessel,”®” such as
the physical forces that LNPs and protein coronas would

apply. Elevated troponin I level or abnormal wall motion
on echocardiography may indicate myocardial involve-
ment.**® Cardiac troponin levels can therefore support a
diagnosis of myocarditis."**

5 | TREATMENT
CONSIDERATIONS

Various antioxidants will be beneficial in the treatment of
COVID-19 vaccine-induced AEs, by scavenging or chain-
breaking ROS and peroxynitrite species, thereby convert-
ing them to less reactive products. Enzymatic antioxidants,
such as superoxide dismutase, glutathione peroxidase,
catalase, glutathione reductase and glutathione trans-
ferase, as well as nonenzymatic endogenous molecules,
such as N-acetylcysteine (NAC), taurine and GSH, could
be used. Thiols and low molecular weight antioxidants,
such as methylsulfonylmethane, tocopherols, ascorbate,
retinol, urate and reduced GSH, would act as ‘the second
line of defense’ against ROS.**®

The application of taurine will be an important treat-
ment consideration for cardiovascular-related AEs. The
beneficial effects of taurine have been demonstrated in
many cardiovascular conditions, such as decreased serum
low-density lipoprotein, decreased progression of athero-
sclerosis, anti-inflammatory effects, regulation of blood
pressure and protection against ischemia-reperfusion
injury of the myocardium. Therefore, taurine protects
against coronary heart disease.”>"**® Furthermore, studies
have demonstrated that taurine supplementation can re-
duce macrophage infiltration, elastin fragmentation and
MMP activation, which are linked to MPO overexpres-
sion. Taurine acts as a competitive target for HOCL.*** The
antioxidant and scavenging effect of taurine makes it an
important treatment option to combat vaccine-induced
oxidative stress, restore mitochondrial dysfunction and
improve cardiac energy metabolism.

Anaphylaxis events after Pfizer vaccination have re-
sponded to epinephrine treatment, although many cases
required more than one dose of epinephrine.’’ Imai et al.
described a case of vaccine-induced cytopenia in the pres-
ence of clozapine, which resolved after discontinuing
the drug.*”® Immunological mechanisms of drug-related
leukopenia have previously been reported after vaccina-
tion.*”® This phenomenon could be expected with drugs
such as steroids, NSAIDs and aspirin, which deplete or
require sulfation for their metabolism.?®> Furthermore,
suppose a vaccine recipient presents with any signs of se-
rotonin syndrome, such as focal seizures or tremors, fas-
ciculation and muscle weakness; they should not be given
a selective serotonin reuptake inhibitor (SSRI). Inorganic
sulfate is needed to inactivate serotonin through sulfation.
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A case of vaccine-induced eosinophilic granulomato-
sis with Polyangiitis (EGPA) was effectively treated with
pulsed intravenous corticosteroids, starting with 250mg
of methylprednisolone for 3 days and transitioning to
oral prednisone at a dose of 1 mg/kg/day. The patient ex-
perienced gradual recovery from myositis and blood eo-
sinophil counts decreased significantly. Prednisone was
reduced and eventually discontinued after 6 months.?”®
This case indicates that COVID-19 vaccines might po-
tentially overstimulate immune-inflammatory pathways
involved in the pathophysiology of the disease. Adding a
sulfur donor, such as NAC, would ensure a better outcome
during steroid treatment.”*'* Patients taking moderate
or high doses of corticosteroids have an increased risk of
COVID-19 and vaccine-induced complications.’*”" In
acute viral myocarditis, the use of NSAIDs remains con-
troversial and has also shown increased myocardial in-
flammation and mortality in murine models and human
case studies.’**® NSAIDs deplete inorganic sulfate, thus
exacerbating the underlying condition of inflammation,
En damage and thrombosis.”> Drugs, such as acetamin-
ophen, with limited anti-inflammatory effects, may have
inadequate analgesic function, increase blood pressure,
deplete a vast amount of inorganic sulfate, impair renal
function and affect left ventricular performance.***3"2

Although IFNs are commonly used to treat viral myo-
carditis,”* they are not recommended for vaccine-induced
myocarditis, in which case the antigens are responsible
for robust inflammatory responses and oxidative stress.
Since adequately sulfated HS is important in regulating
the threshold for IFN stimulation of ma(:rophages,23 one
could expect that undersulfated macrophage HS, and a
degraded GL, will drive the immune response towards a
pro-inflammatory state when IFNs are used as treatment.

Inhibition of MMP13 in CVB3 infected mice has been
shown to increase myocarditis.>* Since HS plays a role
in modulating MMPs, the application of NAC should
be considered. NAC is the acetylated form of Cys. Cys
would serve as a decoy, blocking the binding of GVG Sp
to the cell surface and soluble HS, and as a potent anti-
inflammatory, antioxidant and anticoagulant, plus pre-
cursor to inorganic sulfate.?*'%* Furthermore, due to
its excellent antioxidant properties, NAC's application
significantly reduced ROS.*”® It is important to address
mitochondrial-dependent damage that could be triggered
via oxidative stress, ischemia and DNA damage. At the
same time, mitochondrial dysfunction could induce mi-
toROS burst, further aggravating mitochondrial disor-
ders, in turn.*”* Since thiol groups are established targets
for MPO-derived oxidants, thiol-based therapeutics have
broad applications in biomedicine.?*’

NAC is bioavailable and can cross the BBB, where it
acts via multiple pathways in the brain. Several animal

studies have shown evidence of increased brain GSH
after oral administration of NAC. Oral and transdermal
GSH supplementation, administered to children on the
autism spectrum, has been found to lead to significant
increases in plasma reduced GSH, inorganic sulfate,
Cys and taurine levels.*’ NAC has been shown to be
effective in treating many psychiatric and neurological
disorders and can be beneficial in preventing cognitive
decline associated with acute physiological insults and
dementia-related conditions. NAC has been shown to
modulate several neurological pathways, including gluta-
mate dysregulation, oxidative stress and inflammation.*”*
NAC also has anti-inflammatory activity, independently
of its antioxidant activity.'®*”®> NAC has antithrombotic
effects and potentiates En NO's vasodilator and antiag-
gregatory effects. Intravenous NAC has been shown to
promote lysis of arterial thrombi that is resistant to con-
ventional methods. It has been suggested that the main
molecular target of the antithrombotic activity of NAC
is VWF, which crosslinks platelets in arterial thrombi.’”
However, since NAC also serves as a precursor to inor-
ganic sulfate, the various antithrombotic properties of
an adequately sulfated GL must also be taken into ac-
count.”® In hospitalized patients, with moderate to se-
vere COVID-19 pneumonia, NAC 600mg bid orally for
14 days, improved the PO2/FiO2 ratio over time and de-
creased the white blood cell, CRP, D-dimer and lactose
dehydrogenase levels.’”

Research has shown that patients with coronary heart
disease, stroke and myocardial infarction exhibit signifi-
cantly reduced total GSH levels, making their erythro-
cytes more susceptible to haemolysis. This suggests that
the administration of NAC or GSH could serve as a po-
tential therapeutic strategy to prevent adverse cardiovas-
cular events. Additionally, GSH levels are found to be
decreased in asymptomatic cardiac patients with struc-
tural abnormalities, even before the onset of full-blown
heart failure. Clinical data have demonstrated that intra-
venous administration of GSH during the acute phase of
myocardial infarction, prior to coronary recanalization,
can ameliorate reperfusion damage. This indicates that
timely exogenous administration of GSH or NAC can po-
tentially improve outcomes after myocardial infarction
and slow the progression of cardiac abnormalities leading
to heart failure.'”> Niwano et al. demonstrated that NAC
suppressed myocarditis and electrical remodelling in a
dose-dependent manner in immunized rats,** which con-
firms that hyperoxidative stress plays an important role
in promoting electrical and structural remodelling after
vaccination. NAC has also effectively treated acute liver
failure, spermatogenesis disorders and dermatological
diseases.'®**”! The various antiviral, anti-inflammatory,
antioxidant and anticoagulatory properties of NAC, and
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its role and application in COVID-19, have been discussed
elsewhere %

Hypercatabolic states, such as cytokine storm and sep-
sis, are known to result in thiamine deficiency.’’**”” In
addition to having direct antioxidant properties, thiamine
is also essential for GSH production.>”® Oliveira et al. ob-
served immediate neurological improvement of encepha-
lopathy in COVID-19 patients with high-dose intravenous
thiamine administration.>”® Sulaiman et al. found that the
use of thiamine as an adjunct therapy in critically ill pa-
tients with COVID-19 was associated with a lower inci-
dence of thrombosis.>”” Chen et al. successfully treated a
patient with right facial weakness, after the second dose
of the Moderna vaccine, with thiamine, riboflavin and
prednisolone.*”

To effectively decrease elevated D-dimer levels, it is
necessary to first address the underlying inflammation,
as well as NETosis. Low-dose naltrexone offers prom-
ise in the treatment of severe inflammatory conditions
in patients injected with a COVID-19 vaccine, as it can
dampen innate immune responses and TLR signalling,
and reduce IL-1, TNFa and IFN levels.**® Although dexa-
methasone has previously been shown to reduce neutro-
phil recruitment and NETosis, both in in vitro and in vivo
murine models,'”’ Dowey et al. found that dexametha-
sone did not affect NETosis in neutrophils isolated from
hospitalized patients with COVID-19."7° Since NETs
drive inflammation, thrombosis and disease severity,
finding effective solutions to address NETosis is import-
ant. Ruboxistaurin, a protein kinase C (PKC) inhibitor,
could reduce NET formation, thus diminishing airway
inflammation and other events, including microvascu-
lar thrombosis.'”® Rapid initiation of treatment similar
to severe HIT is recommended for patients with sus-
pected or confirmed VITT. However, it is recommended
to avoid HP and products in VITT management due to
case reports describing thrombosis progression after HP
use, similar to HIT and autoimmune HIT complications.
Non-HP anticoagulants are currently considered better
therapeutic options. Although JAK2 inhibitors, such as
ruxolitinib, have been found to reduce aggregation to
VITT IgG and PF4, they are not recommended in the
treatment of VITT or HIT, due to their partial action and
associated thrombocytopenia. Full blockade-inducing
agents that target FcyRIIA, such as the monoclonal anti-
body IV.3, would be a better option to consider.*

Aspirin as prophylaxis for VITT in vaccine recipients
is not recommended, as a population-based study in
Scotland demonstrated around 50% increased frequency
of haemorrhagic events up to 1 month after vaccination.
Aspirin increases the risk of bleeding and has no clear
benefit,*' plus it increases urinary excretion of inorganic
sulfate.”

To remove NETSs, treatment with deoxyribonuclease-1,
or pharmacological inhibitors, has also been suggested,
which was shown to inhibit tumour-induced inflamma-
tion and metastasis.'”’ Interestingly, a proposed mech-
anism for tumour enhancement involves NETs that
stimulate mitochondrial biogenesis and bioenergetics
in tumour cells, through the induction and activation
of TLRs and peroxisome proliferator-activated receptor-
gamma coactivator (PGC-1a), a key regulator of cellular
energy metabolism. It has been suggested that this mech-
anism is how metformin inhibits the adhesion of cancer
cells to NETs and consequently prevents metastasis.'”’
Bioidentical progesterone will decrease the activity of
SULFs, which have been implicated as the main drivers
of hormonal cancers and metastasis. Furthermore, sulfur
donors, such as NAC, GSH and methylsulfonylmethane,
will increase the availability of inorganic sulfate and up-
regulate SULTSs, resulting in the inactivation of oestrogen
through sulfation,***%3!

Elevated oxidative stress, as a result of increased ex-
pression of MPO, LNP activity and inflammatory me-
diators, can result in phospholipid oxidation. LNP and
HOCI-induced haemolysis, and cell lysis in general, can
be addressed by the application of plasmalogens. HOCI-
induced cytotoxicity has also been reported in immune
and EnCs, lung and bronchial EpCs, chondrocytes, fi-
broblasts and vascular smooth muscle cells.”® Cellular
plasmalogen lipids are a target for HOCI, which cleaves
the plasmalogen vinyl ether linkage, resulting in elevated
levels of chlorinated aldehydes.”****? Plasmalogens are
especially abundant in neuronal, cardiac and immune
cells. ' A deficiency, or destruction of plasmalogen, an
antioxidant of the cellular membrane, has been linked
to various diseases, such as respiratory disorders, neu-
rodegenerative, cardiovascular, cancer and various in-
flammatory diseases, and metabolic syndrome. Both
oxidative stress and chronic inflammatory conditions
will result in plasmalogen deficiency,?*****73*¢ resulting
in membrane defects.?®! Plasmalogen replacement ther-
apy will be an important treatment option to consider, by
administering purified plasmalogens, and/or plasmalo-
gen precursors, to increase plasmalogen levels. Chimyl
alcohol and alkylglycerol are important precursors that
have been shown to restore plasmalogen levels, while
DHA-enriched lipids effectively increased plasmalo-
gen levels in the brain.*****"*33%7 precursors are better
absorbed than purified plasmalogens.*****’ Since low-
density lipoprotein (LDL) is a major transport protein of
plasmalogens, the use of statin drugs might not be ad-
visable to treat vaccine-induced AEs.>*%3% Furthermore,
plasmalogen replacement therapy has been shown to
be approximately twice as effective as statins in lower-
ing cholesterol levels, where plasmalogen precursors
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reduced membrane cholesterol levels through increased
membrane cholesterol esterification and transport.*8¢3%?

The protease inhibitor, doxycycline, significantly re-
duces GL PG shedding and should be investigated as a
treatment option in AE associated with the vascular sys-
tem. HPSE-2 should also be up-regulated, as it will in-
activate HPSE-1 and thus reduce EnGL degradation.**
Yuan et al. successfully treated EnGL degradation with
HS mimetics.'* Since a degraded EnGL will favour the
migration of cytokines, vaccine antigens and ingredients,
focusing treatment options on restoring the GL will be
necessary. To effectively address the various AEs caused
by COVID-19 vaccination, it is clear that a comprehen-
sive and personalized treatment protocol is needed, rather
than a single-drug approach.

6 | CONCLUSIONS

With substantial evidence indicating that the GVG Sp
antigen, genetic material and LNPs used in COVID-19
vaccines can lead to endotheliopathy,13 a re-evaluation
of DNA and mRNA vaccination is warranted. These
components in the vaccines trigger the release of pro-
inflammatory cytokines and excessive oxidative stress,
negatively affecting the integrity of the GL through
reduced sulfation and degradation. This impairment
of GL function may result in skewed inflammatory re-
sponses, compromised immunity, oxidative stress, a
procoagulatory state and various disease processes. In
particular, COVID-19 vaccines did not prevent infec-
tion39%3% or transmission,nz’392 and were associated
with a significant risk of chronic disease, serious AEs or
death,15:20.146.179.393,394

Nanotechnology, which has been hailed as a major ad-
vancement in medical research and nanovaccinology, has
been rapidly deployed in the fight against COVID-19.5>%
However, lipid-based mRNA delivery systems, despite
demonstrating high transfection efficiency in vitro, faced
toxicity issues and poor pharmacokinetic profiles in vivo,
resulting in unwanted inflammatory and immune re-
sponses. Inadequate research on the biocompatibility of
these NPs prior to clinical application led to severe ad-
verse reactions and fatalities related to COVID-19 vaccina-
tion.'>® It is most likely that the LNP platforms resulted
in acquired cellular immunopathology and severe oxida-
tive stress. Although there is scope for using NPs in pre-
cision medicine with intelligent NP design, much more
research is needed to gain valuable insights regarding its
possible adverse effects in vivo at the molecular level. It
is also essential to fully understand the molecular-cel-
lular basis of the rare, and severe, AEs experienced after

vaccination with the first generation COVID-19 vaccines,
with more research urgently needed in this area. However,
it will only be possible to conclude by fully disclosing the
precise content of the various COVID-19 vaccines and
manufacturing procedures.

The maintenance and restoration of GL integrity
is proposed as a primary therapeutic approach against
COVID-19 and vaccine-induced AEs. GAGs and proteogly-
cans, essential components of the GL, are highly complex
biomolecules with significant structural and functional
heterogeneity. Taking into account the complexity of the
innate immune system, GL and inflammatory responses,
the current focus on only adaptive immune responses in
vaccinology should be revisited.

Synthetically induced chronic inflammation, as seen
postvaccination, can have detrimental effects on tissues,
organs and normal cells, leading to increased morbidity
and mortality. While a natural inflammatory response
is beneficial, the pathological consequences of induced
chronic inflammation highlight the importance of rather
addressing the underlying causes of infectious disease
susceptibility, such as promoting balanced wholefood nu-
trition, effective supplementation, moderate exercise, hy-
giene, rest and autonomic balance.

Concerns arise from the continued development of var-
ious COVID-19 vaccines and plans for DNA and mRNA
vaccines for other diseases. Although inactivated vaccines
have a relatively good safety profile, they have low im-
munogenicity; mRNA vaccines demonstrate greater im-
munogenicity, but relatively higher adverse event rates.”
The risks associated with gene therapy and vaccination
may outweigh the potential benefits, necessitating care-
ful consideration and critical evaluation of their impact
on the innate immune system, and the general body sys-
tem. The focus should be on addressing the root causes of
diseases, rather than pursuing profit-driven approaches.
Additionally, the compatibility of synthetically engineered
NPs with the complexity of the human body's physiology
must be thoroughly examined to ensure patient safety and
well-being.
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