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Abstract

The emergence of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)
Omicron subvariants raises concerns regarding the effectiveness of immunity
acquired from previous Omicron subvariants breakthrough infections (BTIs) or re-
infections (RIs) against the current circulating Omicron subvariants. In this study, we
prospectively investigate the dynamic changes of virus-specific antibody and T cell
responses among 77 adolescents following Omicron BA.2.3 BTI with or without
subsequent Omicron BA.5 RI. Notably, the neutralizing antibodies (NAbs) titers
against various detected SARS-CoV-2 variants, especially the emerging Omicron
CH.1.1, XBB.1.5, XBB.1.16, EG.5.1, and JN.1 subvariants, exhibited a significant
decrease along the time. A lower level of IgG and NAbs titers post-BTI was found to
be closely associated with subsequent RI. Elevated NAbs levels and shortened an-
tigenic distances were observed following Omicron BA.5 RI. Robust T cell responses
against both Omicron BA.2- and CH.1.1-spike peptides were observed at each point
visited. The exposure to Omicron BA.5 promoted phenotypic differentiation of
virus-specific memory T cells, even among the non-seroconversion adolescents.
Therefore, updated vaccines are needed to provide effective protection against

newly emerging SARS-CoV-2 variants among adolescents.
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1 | INTRODUCTION

The coronavirus disease 2019 (COVID-19) pandemic, which com-
menced over 3 years ago, has resulted in more than 775 million
confirmed cases and a global death toll exceeding seven millions as of
March 31, 2024. Currently, with newly emerging Omicron sub-
variants, particularly CH.1.1, XBB.1.5, XBB.1.16, EG.5.1, and JN.1,
the investigation of whether the patients who have recovered from
the previous Omicron subvariant breakthrough infections (BTls) still
retain sufficient immunity to effectively prevent reinfections (Rls)
against newly emerging Omicron subvariants is of significant
importance.

The majority of previous studies on Omicron BA.1 or BA.2 BTI
has primarily focused on assessing humoral immunity during the early
convalescent stage,>"® demonstrating broadly neutralizing activity
against previous variants of concern and Omicron subvariants
derived from the BA.2. However, there is a limited number of studies
that specifically investigate the persistence of immunity beyond
6 months post-Omicron subvariants BTI,” revealing diminished levels
of neutralizing antibodies (NAbs) against BA.2.75.2, BA.4/5,
and BQ.1.1. Given the ongoing evolution of severe acute respiratory
syndrome coronavirus 2 (SARS-CoV-2), various Omicron subvariants
have been reported to evade NAbs induced by both vaccination and
prior infection, especially for Omicron BQ.1.1, BA.2.75.2, CH.1.1,
XBB.1.5, XBB.1.16, EG.5.1, and JN.1.27%° Therefore, further studies
are needed to evaluate the neutralizing capacity against various
emerging Omicron subvariants and to explore the persistence of
NAbs in a longer followed-up prospective cohort.

Considering the T cell responses, Tan et al. have found that they
may play an important role in virus prevention and clearance,'* when
robust CD4* and CD8"* T cell responses are elicited post-SARS-
CoV-2 vaccination or infection.?>12 The persistence of memory T cell
response becomes particularly critical given the rapid decline of
humoral immunity post-infection or vaccination. Several studies have
shown that the majority of T cell responses induced by vaccination or
infection can cross-recognize both the wild-type (WT) and Omicron

1415 and Tarke et al. also have demonstrated that T cell

6

variants,
cross-reactivity is observed within Alpha and Beta coronaviruses.!
However, whether T cells respond to distinct peptides from the spike
protein in different strains in not tested.

Previous studies have shown that children had a stronger early
innate antiviral response against SARS-CoV-2 infection in their air-
way immune cells compared to adults,>” and children are capable of
generating robust, cross-reactive and sustained immune responses to
SARS-CoV-2 when compared to adults.*® Although clinical manifes-
tations of children's COVID-19 cases were generally less severe than
those of adult patients, young children were vulnerable to SARS-
CoV-2 infection.!” Therefore, considering the virus susceptibility and
place aggregation of adolescents, it is of great importance to conduct
prospective studies on the characteristics of immune response
among them post-SARS-CoV-2 BTl and RI.

Overall, the full comprehension of humoral and cellular immunity

durability characteristics among adolescents following Omicron BTI

and RI remains incomplete.?%?! Our previous cross-sectional studies
have demonstrated the presence of NAbs responses following
Omicron BA.2 BTls and/or Omicron BA.5 RIs.822 In this study, we
conducted a prospective follow-up over a 12-month period on 77
adolescent patients post-Omicron BA.2.3 BTI with or without Omi-
cron BA.5 RI to measure the virus-specific binding IgG antibodies,
detect NAbs against various emerging Omicron subvariants, and
elucidate the activation and differentiation of T cell responses toward
different Omicron peptide pools. These results can expand our un-
derstanding of the dynamic changes in NAbs and T cell responses

among adolescents.

2 | METHODS
2.1 | Study design and participants

In March 2022, a cohort of 77 participants with Omicron BA.2.3
infections were enrolled in Binzhou City, Shandong Province, China
to investigate the characteristics of humoral and cellular immunity
(Supporting Information S1: Figure S1). The participants consisted of
adolescents aged 13-16 years (median age: 14.0), with 37 (48.1%)
being male. All subjects had previously received two doses of in-
activated vaccines (CoronaVac or BBIBP-CorV). Among them, 30
(39.0%) subjects were asymptomatic, while 47 (61.0%) subjects were
symptomatic after contracting Omicron BA.2.3 infection, with fever
(41.6%), cough (31.2%), and headache (11.7%) being the most com-
monly reported symptoms. Four followed-up visits were conducted
at 0.5-month (T1), 3-month (T2), 6-month (T3), and 12-month (T4)
post-Omicron BA.2.3 BTI (Table 1). Serum and peripheral blood
mononuclear cells (PBMCs) were collected from all participants. The

detailed information is given in Supporting Information Methods.

2.2 | Enzyme-linked immunosorbent assay analysis
of binding IgG antibody to spike trimer of Omicron
BA.2 and BA.5

The serum binding IgG antibody against Omicron BA.2 and BA.5 was
assessed using an enzyme-linked immunosorbent assay, as previously
reported.?® The detailed information is given in Supporting Infor-
mation Methods.

2.3 | Pseudovirus neutralization assay

The serum NADbs responses against the D614G strain and Omicron
BA.2, BA.5, BF.7, BQ.1.1, BA.2.75.2, CH.1.1, XBB.1.5, XBB.1.16,
EG.5.1, and JN.1 subvariants were measured using a pseudovirus
neutralization assay (Supporting Information S1: Figure 52).8 Detailed
information regarding the production of pseudoviruses and the ex-
ecution of neutralization assay can be found in Supporting Informa-
tion Methods.
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TABLE 1 Characteristics of donor cohorts.

Age (median, range)
Gender (n, %)
Male
Female
Vaccination (n, %)
First dose
CoronaVac
BBIBP-CorV
Second dose
CoronaVac

BBIBP-CorV

COVID-19
(n=77)

14.0 (13.0-16.0)

37 (48.1)

40 (51.9)

28 (36.4)

49 (63.6)

53 (68.8)
24 (31.2)

Clinical symptoms after Omicron BA.2 BTI (n, %)

Asymptomatic

Symptomatic
Fever
Cough
Headache
Sore throat
Runny nose

Vomiting

30 (39.0)
47 (61.0)
32 (41.6)
24 (31.2)
9 (11.7)
8 (10.4)
4 (5.2)
1(1.3)

Healthy
controls (n = 20)

16.0 (12.0-16.0)

10 (50.0)
10 (50.0)

6 (30.0)
14 (70.0)

15 (75.0)
5(25.0)

N/A
N/A
N/A
N/A
N/A
N/A
N/A
N/A

Clinical symptoms after Omicron BA.5 reinfection (n, %)

Asymptomatic
Symptomatic

Days between last
vaccination and BTI
(median, IQR)

Sampling time (median, IQR)

Days between BTI/
vaccination and first
visit

Days between BTI
and second visit

Days between BTl and
third visit
Days between BTl and

fourth visit

Days between BTl and
reinfection

Days between
reinfection and fourth
visit

22 (100)
0 (0)
202.0 (169.0-207.0)

15.0 (14.0-17.0)

99.0 (98.0-101.0)

199.0 (197.0-200.0)

343.0 (341.0-344.0)

287.5 (278.8-293.3)

55.0 (48.8-64.0)

N/A
N/A
N/A

15.5 (13.0-18.8)°

N/A

N/A

N/A

N/A

N/A

?Days between the last vaccination and sampling for healthy

controls.

30f13
MEDICAL VIROLOGY — W LEY—‘—
2.4 | Flow cytometry-based T cell assays

The activation-induced cell marker (AIM) assay and intracellular
staining (ICS) assay were conducted as previously described.?* The
PBMCs were stimulated with Omicron BA.2 or CH.1.1 peptides
(Table S1), followed by incubation with selected flow antibodies. All
samples were acquired on an ID7000™ Cell Analyzer (Sony Bio-
technology) and analyzed using the ID7000 Software (https://www.
sonybiotechnology.com/us/instruments/id7000-spectral-cell-

analyzer/software/). The detailed information is given in Supporting

Information Methods.

2.5 | Statistical analysis

All statistical analyses were performed using GraphPad Prism (version
8.0.2) and RStudio (version 4.2.3). Normality was assessed by per-
forming the Kolmogorov-Smirnov test (n > 50) or the Shapiro-Wilk
test (n < 50). For normally distributed data, paired or unpaired t-tests
were used for comparison. In the case of non-normal data, differ-
ences between paired groups were assessed using the Wilcoxon test
or Friedman test, while differences between unpaired groups were
assessed using the Mann-Whitney test or Kruskal-Wallis test. The
strength of correlations was evaluated using Spearman's test. All

statistical tests were two-sided with a significance level of 0.05.

3 | RESULTS

3.1 | Omicron subvariants BTl and Rl elicit high
spike-specific binding 1gG antibodies against both
Omicron BA.2 and BA.5

The data revealed that the Omicron BA.2.3 BTI can induce signifi-
cantly higher spike-specific binding 1gG antibodies against Omicron
BA.2 and BA.5 compared to healthy controls (HCs) immunized with
two-dose inactivated vaccines (Figure 1A). Comparison of the geo-
metric mean titers (GMT) at different time points demonstrated a
significant reduction in both Omicron BA.2- and BA.5-specific bind-
ing IgG antibodies at T2 compared to that at T1, followed by a gradual
decline in T3 and T4 (Figure 1A). Further comparison revealed no
significant differences in the levels of Omicron BA.5-specific binding
IgG antibodies and Omicron BA.2-specifc binding IgG antibodies at all
time points examined. Notably, a majority of the participants showed
detectable levels of binding 1gG antibodies during the follow-up
period (Figure 1B).

More importantly, we observed a significant increase in Omicron
BA.2- and BA.5-specific binding 1gG antibodies at T4 among ado-
lescents in the RI group compared to that of T3 (Figure 1C), while the
non-reinfection (NRI) group exhibited a significant decrease in bind-
ing IgG antibodies from T3 to T4 (Figure 1D). Furthermore, upon
comparing the RI group with the NRI group, it became apparent that
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FIGURE 1 Spike-specific binding I1gG antibodies responses against Omicron BA.2 and BA.5 in adolescents. (A) Dynamic changes of
spike-specific binding 1gG antibodies against Omicron BA.2 and BA.5 at the four investigated time points. (B) Comparison of spike-specific
binding 1gG antibodies titers between Omicron BA.2 and BA.5 by different visited time points. (C) Comparison of spike-specific binding 1gG
antibodies titers against Omicron BA.2 or BA.5 at 6- and 12-months of adolescents with Omicron BA.5 reinfection (RI). (D) Comparison of spike-
specific binding IgG antibodies titers against Omicron BA.2 or BA.5 between 6- and 12-months of adolescents without Omicron BA.5 RI. (E)
Comparison of spike-specific binding 1gG antibodies titers against Omicron BA.2 or BA.5 between Omicron Rl group and non-reinfection (NRI)
group at 6 months. Sera were collected from the adolescents at 0.5-, 3-, 6-, and 12-month post-Omicron BA.2.3 breakthrough infection (BTI)
with or without subsequent Omicron BA.5 RI. Sera of healthy controls (HC) in panel (A) were collected from 20 adolescents with only two-dose
inactivated vaccination. The geometric mean with a 95% confidence interval (Cl) or geometric mean alone is shown in the above panels. The
black dashed line indicates the threshold for initial dilution (1:200). The Kruskal-Wallis test adjusted with the false discovery rate (FDR) method
for multiple comparisons was performed in panel (A), Wilcoxon matched-pairs signed rank test was performed in panels (B-D). Mann-Whitney
test was performed in panel (E). p < 0.05 was considered statistically significant. *p < 0.05, **p < 0.01, ***p < 0.001, ****p < 0.0001.

individuals who experienced subsequent Rl exhibited significantly
lower levels of binding IgG antibodies against both Omicron BA.2 and
BA.5 at T3, thereby indicating a close association between reduced

levels of binding IgG antibodies and subsequent RI (Figure 1E).

3.2 | Omicron Rl broadens the neutralizing ability
against emerging Omicron subvariants

Firstly, we conducted a comparative analysis of NAbs titers against
the same strain at different time points during followed-up
(Figure 2A). At T2, significantly lower NAbs titers were observed
against D614G and all Omicron subvariants compared to those at T1.
At T3, there was a slight or significant decrease in NAb titers against
all strains compared to those at T1. Overall, within 6 months post-
Omicron BA.2.3 BTI, the NAbs titers against all detected variants
continuously decreased, while there was a significant or slight
increase in NAbs titers against all Omicron subvariants at T4 com-
pared to those at T3, following the Omicron BA.5 wave. After

excluding participants with BA.5 RI from the cohorts, we observed a
continuous decrease in NAbs titers against all detected variants from
T1 to T4 (Supporting Information S1: Figure S3A). Then, we com-
pared the NADbs titers against various stains at the same time points
of followed-up (Figure 2B). Overall, compared to the D614G, the
serum NAbs titers were comparable against Omicron BA.2 and
slightly decreased against both Omicron BA.5 and BF.7, whereas
there was a significant decrease in NAbs titers against all other
Omicron subvariants.

The NAbs titers against Omicron BA.5 at T2 and T3 were 1.1 to
2.5 times lower than those at T1. For Omicron BF.7, the NAbs titer at
T2 and T3 were 1.6 to 2.2 times lower than those at T1 (Figure 2A).
Consistent with the change in binding IgG antibodies, adolescents
with RI exhibited significantly higher NAbs titers at T4 than those at
T3 (Supporting Information S1: Figure S3B). Importantly, the Rl group
of adolescents showed slightly or significantly lower NAbs titers
against all detected variants than the NRI group at T3, revealing that
lower levels of NAbs were also associated with subsequent RI

(Supporting Information S1: Figure S3C). The antigenic map analysis
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FIGURE 2 (See caption on next page).
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further revealed that the SARS-CoV-2 variants used in this study can
be divided into two distinct antigenic groups (Group 1 and Group 2)
(Supporting Information S1: Figure S3D). By calculating the relative
distances between D614G and each of the Omicron subvariants, we
observed significant differences between Group 1 and Group 2 at all
examined time points (Supporting Information S1: Figure S3E). Con-
sidering the different time points during the followed-up, we dem-
onstrated that within a 6-month period post-Omicron BA.2.3 BT, the
relative distances in Group 2 were comparable across all visited time
points. However, Omicron BA.5 Rl at T4 exhibited a significant
reduction in antigenic relative distances compared to others
(Supporting Information S1: Figure S3F).

3.3 | Robust T cell responses are observed against
both Omicron BA.2 and CH.1.1 peptides

We then combined AIM assay with cytokine ICS assay to evaluate T
cell responses (Supporting Information S1: Figure S4). Spike-specific
CD4" and CD8" T cell responses against each of Omicron BA.2 and
CH.1.1 mega peptide pools (MPs) were measured by AIM
OX40*CD137" (CD4" T cells) or CD69"CD137* (CD8* T cells)
(Figure 3A,C). For AIM*CD4" T cells, comparable percentages against
Omicron BA.2 and CH.1.1 MPs were observed at T3 ([median 0.27%,
IQR 0.19%-0.45%] and [median 0.27%, IQR 0.19%-0.39%]) and T4
([median, 0.27%, IQR 0.17%-0.42%] and [median 0.26%, IQR 0.18%
-0.37%]), respectively, which were significantly higher than those in
HCs. What's more, no significant differences in AIM*CD4* T cell
responses were observed between T3 and T4 (Figure 3B). Similarly,
the responses of AIM*CD8" T cells against Omicron BA.2 and CH.1.1
were comparable at T3 ([median 0.49%, IQR 0.27%-0.67%] and
[median 0.44%, 0.28%-0.65%]) and T4 ([median 0.31%, IQR 0.19%
-0.45%) and [median 0.29%, IQR 0.19%-0.47%)), respectively. And
the AIM*CD8" responses also significantly higher in infected ado-
lescents than that in vaccinated HCs. However, the AIM*CD8" T cell
responses were significantly reduced at T4 compared to those at T3
(Figure 3D). Further comparison showed that there were no signifi-
cant differences of AIM* CD4" or CD8" T cell responses between the
RI group and the NRI group by different Omicron spike MPs or dif-
ferent Rl statuses (Supporting Information S1: Figure S5A, 5B).

Notably, regardless of Rl or not, AIM* CD8" T cell responses were
significantly lower at T4 than that at T3 (Supporting Information S1:
Figure S5B).

Then the spike-specific CD4* or CD8" T cells secreting TNF-q,
IL-2, and IFN-y were measured by ICS assay (Figure 4A,B). At the
same time point (T3 or T4), the percentage of ICS* CD4" or CD8* T
cells stimulated by Omicron BA.2 or CH.1.1 MPs was comparable and
significantly higher than that in HCs (Figure 4C,D). When comparing
different followed-up time points, both Omicron BA.2 and CH.1.1
spike-specific ICS* CD4" or CD8" T cell percentages were signifi-
cantly reduced at T4 compared to those at T3 (Figure 4C,D). When
the adolescents were divided into RI and NRI groups, we observed
comparable ICS* CD4* or CD8" T cell responses induced by Omicron
BA.2 or CH.1.1 MPs in each group at the same time points
(Supporting Information S1: Figure S6A, 6B), and within the same
group, the ICS* responses were significantly reduced at T4 compared
to those at T3 (Supporting Information S1: Figure S6A, 6B). By
comparing the T4/T3 ratio values for ICS®™ CD4" or CD8* T cell
responses among different groups, we observed a significantly lower
TNF-a* CD4" T cells ratio value in the NRI group compared to the RI
group, however, no significant differences were observed in other
ICS* CD4"* or CD8" T cell responses between the groups (Supporting
Information S1: Figure S6A, 6B). We further analyzed the polyfunc-
tional profiles of T cells that produce cytokines in multiple secreting
patterns and demonstrate similar capacities for cytokines co-
expression for both Omicron BA.2 and CH.1.1-spike specific T cells at
T3 or T4, indicating the normal function of T cell responses in rec-
ognizing different Omicron subvariants (Figure 4E-H). Notably, there
were also no significant differences observed in the polyfunctional
profiles for either ICS* CD4"* or CD8"* T cells between T3 and T4,
suggesting that the ICS* responses maintained stable following
Omicron BA.2.3 BTI (Figure 4E-H). Considering the RI status, no
significant differences were found in the polyfunctional profiles
among groups of Rl T3, NRI T3, Rl T4, and NRI T4 for both CD4" and
CD8" T cells (Supporting Information S1: Figure S6C, 6D). Overall,
our findings demonstrated a significant increase in AIM* or ICS™ T cell
responses following Omicron BA.2.3 BTl compared to those
observed in solely vaccinated HCs. Furthermore, robust T cell
responses were observed against various Omicron subvariants,
including Omicron BA.2 and CH.1.1.

FIGURE 2 Neutralizing antibodies (NAbs) responses against D614G and emerging Omicron subvariants in adolescents. (A) Dynamic changes
of NAbs titers against D614G and Omicron BA.2, BA.5, BF.7, BQ.1.1, BA.2.75.2, CH.1.1, XBB.1.5, XBB.1.16, EG.5.1, and JN.1 at the four
investigated time points. (B) Comparison of virus-specific neutralizing antibody titers among D614G and various emerging Omicron subvariants
by different followed-up time points. Sera were collected from the adolescents at 0.5-, 3-, 6-, and 12-month post-Omicron BA.2.3 breakthrough
infection (BTI) with or without subsequent Omicron BA.5 reinfection (RI). Sera of healthy controls (HC) in panel (A) were collected from 20
adolescents with only two-dose inactivated vaccination. The geometric mean with a 95% confidence interval (Cl) or geometric mean alone is
shown in the above panels. Values of GMT were shown at the bottom of the panel (A). Values of GMT with reduction times compared to
D614G, and the prevalence of detectable NAbs titers above 30 were shown in the panel (B). The black dashed line indicates the threshold for
detectable NAbs titers (IDso = 30). A Kruskal-Wallis test adjusted with the FDR method for multiple comparisons was performed in panel (A).
Wilcoxon matched-pairs signed rank test for comparisons between D614G and each of the Omicron subvariants was performed in panel (B).
p < 0.05 was considered statistically significant. *p < 0.05, **p < 0.01, ***p < 0.001, ****p < 0.0001. GMT, geometric mean titers.
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FIGURE 3 Spike-specific AIM+ CD4+ or CD8+ T cell responses against Omicron BA.2 and CH.1.1 in adolescents. The percentage of AIM*
(OX407CD137") of CD4" T cells (A and B) and AIM* (CD69"CD137") of CD8" T cells (C and D) after stimulation of PBMCs with Omicron BA.2 or
CH.1.1 spike-specific Mega peptide pools (MPs). PBMCs were collected from the adolescents at 6- and 12-month post-Omicron BA.2.3
breakthrough infection (BTI) with or without subsequent Omicron BA.5 reinfection (RI). PBMCs of HCs were collected from 10 adolescents with
only two-dose inactivated vaccination. Graphs show individual responses of AIM™ CD4* or CD8" T cell responses against Omicron BA.2 or
CH.1.1 MPs plotted as background-subtracted DMSO negative controls. Boxplots indicate median and interquartile range (IQR). Wilcoxon
matched-pairs signed rank test and Mann-Whitney test were performed in panels (B and D), and p < 0.05 was considered statistically significant.
AIM, activation-induced cell marker; HC, healthy controls; PBMCs, peripheral blood mononuclear cells.

3.4 | Omicron BA.5 exposure promotes the
differentiation of virus spike-specific memory T-cells

To explore the differentiation patterns of Omicron BA.2 and CH.1.1
spike-specific memory T cells, we selected two surface markers,
CD45RA and CCR?7, to subdivide spike-specific memory T cells into
central memory T cells (TCM, CD45RA™CCR7%), naive T cells (Tnaive,
CD45RA*CCR7"), effector memory T cells (TEM, CD45RA™CCR7"),
and terminally differentiated effector memory T cells (TEMRA,
CD45RA"CCR7") by detecting the expression levels on virus-specific

AIM* T cells (Figure 5A). The results showed that TEM and TCM
constituted the primary subsets of Omicron BA.2 and CH.1.1 spike-
specific CD4" T cells, with a slightly or significantly higher proportion
of TEM and a lower proportion of Tnaive at T4 compared to that at
T3 (Figure 5B). Regarding virus spike-specific CD8" T cells, the main
subsets identified as TEM and TEMRA for both Omicron BA.2 and
CH.1.1 MPs. At T4, there was a slight or significant increase in the
percentage of TEM subset, while the percentage of TCM subset
showed a slight or significant reduction compared to that at T3 for
spike-specific memory CD8" T cells (Figure 5C).
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Considering the RI status, we found that the phenotypic
differentiation of spike-specific memory CD4" or CD8* T cells
was comparable between the Rl group and NRI group as a whole
(Supporting Information S1: Figure S7A-D). Further comparison
between these two groups revealed that the NRI group exhibited
a higher percentage of TEM subset at T3 compared to the RI
group, while no significant difference in TEM subset was
observed at T4, indicating a correlation between lower TEM
subset and susceptibility to Omicron BA.5 Rl (Supporting Infor-
mation S1: Figure S7E-H).

3.5 | Correlations between potential influence
factors and immune responses

Finally, we conducted an analysis to determine the correlation
between sex and initial clinical symptoms with antibody and T cell
responses. Our findings revealed that males exhibited signifi-
cantly higher NAbs titers against Omicron BA.5, BA.2.75.2, and
XBB.1.5 subvariants compared to females at T2 (Supporting
Information S1: Figure S8A). As expected, asymptomatic patients
showed significantly higher NAbs titers against some Omicron
subvariants at each visited time point (Supporting Information S1:
Figure S8B). For virus-specific T cell responses, only a few dif-
ferences were identified between these factors (Supporting
Information S1: Figure S8C,D). Overall, the influence of sex and
initial clinical symptoms on the responses of antibody and T cell

was limited.

4 | DISCUSSION

In this study, we investigated the persistence of antibody and T
cell responses in a prospective cohort of adolescents approxi-
mately 1 year post-Omicron BA.2.3 BTl with or without subse-
quent Omicron BA.5 RI. Our results revealed that Omicron BA.2.3
BTI elicited higher levels of virus-specific IgG and NAbs titers
compared to those observed in vaccinated HCs. Over the course
of follow-up, both IgG and NAbs titers gradually declined but
remained detectable against previous Omicron BA.2 and BA.5
subvariants. However, notable neutralization resistance was

observed against emerging Omicron BQ.1.1, BA.2.75.2, CH.1.1,
XBB.1.5, XBB.1.16, EG.5.1, and JN.1 subvariants and most of the
adolescents possessed diminished NAbs titers against these
Omicron subvariants 6-month post-BTI. Importantly, there is a
significant correlation between lower levels of I1gG and NAbs
titers and subsequent Omicron BA.5 RI, which can effectively
reduce the antigenic distances between the D614G and each of
the detected Omicron subvariants. What's more, robust virus-
specific T cell responses were observed in most of the individuals
against both Omicron BA.2 and CH.1.1 MPs. Interestingly, ex-
posure to Omicron BA.5 promotes phenotypic differentiation of
virus-specific memory T cells, leading to an increase of TEM
subset for both CD4* and CD8" T cell responses.

Previous studies have demonstrated that Omicron BA.1 or BA.2
BTI leads to a significant increase in NAbs titers against the D614G
and Omicron subvariants compared to primary vaccination or infec-
tion at early convalescent (1-3 months),>*¢2>2% and the NAbs titers
gradually decrease at 6-8 months post-BTI.27?8 In this study, we
confirm these findings that Omicron BA.2 BTl induces IgG and NAbs
titers against Omicron subvariants more effectively than vaccination
alone in HCs, and these titers remained detectable for previous
Omicron subvariants (BA.2, BA.5, and BF.7) at 12-month post-BTI.
However, with the emergence of various Omicron subvariants,
neutralization resistance continues to be strengthened. Following
Omicron BA.2 BTI, the NAbs titers remain high against D614G, BA.1,
and BA.2,2°%?5°28 hile slightly decrease against BA.4/5 and
BA.2.12.1,%%25°2% and show apparently immune escape against
BA.2.75 and BQ.1.1.2,>>28 Consistent with previous studies men-
tioned above, we also found that higher NADbs titers are induced by
Omicron BA.2.3 BTl against the D614G and previous Omicron BA.2,
BA.5, and BF.7 subvariants, while significant lower NAbs titers are
generated against newly emerging Omicron subvariants,
including BQ.1.1, BA.2.75.2, CH.1.1, XBB.1.5, XBB.1.16, EG.5.1, and
JN.1. What's more, we identified that the lower levels of IgG and
NAbs titers are closely related to subsequent Omicron BA.5 RI. Thus,
an updated COVID-19 vaccine targeting a more recent circulating
variant is needed to combat the newly emerging SARS-CoV-2
variants.

Despite extensive mutations and reduced neutralizing ability
against emerging Omicron subvariants, the virus-specific T cells
responses induced by vaccination or infection are robust and able

FIGURE 4 Spike-specific ICS+ CD4+ or CD8+ T cell responses against Omicron BA.2 or CH.1.1 in adolescents. The percentage of TNF-a*,
IL-2*, and IFN-y* for CD4" T cells (A and C) and the percentage of TNF-a*, IL-2*, and IFN-y* for CD8" T cells (B and D) after stimulation of
PBMCs with Omicron BA.2 or CH.1.1 spike-specific Mega peptide pools (MPs). Comparison of the polyfunctional profiles between Omicron

BA.2 and CH.1.1 spike-specific CD4" T cells (E and G) or CD8" T cells (F and H) at 6-month and 12-month. PBMCs were collected from the
adolescents at 6- and 12-month post-Omicron BA.2.3 breakthrough infection (BTI) with or without subsequent Omicron BA.5 reinfection (RI).
PBMCs of HCs were collected from 10 adolescents with only two-dose inactivated vaccination. Graphs show individual responses of ICS* CD4*
or CD8" T cell responses against Omicron BA.2 or CH.1.1 MPs plotted as background-subtracted DMSO negative controls. Boxplots indicate
median and interquartile range (IQR). Each response pattern (i.e., any possible combination of IFN-y, IL-2, or TNF-a expression) is color-coded,
and data is summarized in the pie charts in panels (E-H). No significant differences were observed between pies using a permutation test for
ICS™CD4" or ICS'CD8" T cell responses. Wilcoxon matched-pairs signed rank test and Mann-Whitney test were performed in panels (C-H), and
p < 0.05 was considered statistically significant. HC, healthy controls; ICS, intracellular staining; PBMCs, peripheral blood mononuclear cells.
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to cross-recognize the different SARS-CoV-2 variants, including the
Omicron variant.}#1%2029.30 The Omicron BA.2- and CH.1.1-spike
genes were selected to synthesize the corresponding MPs in this
study, taking into account the previous variant of infection and the
circulating variant at that time. These two variants differ by 13
amino acids, which affect 10.0% (25/252) of peptide sequences.
Also, we calculated that the percentage of different peptide
sequences between WT and each of the Omicron subvariants (BA.2
or CH.1.1) is 21.8% (55/252) and 26.2% (66/252), respectively.
Similar with these reported studies, we clarified that well-
recognized T cell responses exist between the previous circulating
Omicron BA.2 and the emerging Omicron CH.1.1, regardless of
visited time points and Rl status. Interestingly, the AIM*CD4" T cell
responses remained stable, while AIM*CD8" T cell responses and
ICS* CD4"* or CD8" T cell responses were significantly reduced at
12-month compared to those at 6-month post-Omicron BA.2.3 BTI.
What's more, the T cell responses are not strengthened in the RI
group (2-month post-RI) than those in the NRI group (6-month
post-BTIl). One possible reason is that the T cell responses may be
not significantly enhanced by additional antigen exposures.?!3!
Notably, the adolescents with Omicron BA.5 Rl in this study were
asymptomatic, which was distinctly different from the status post-
Omicron BA.2.3 BTI. Therefore, combined with the findings of a
recent study,®? we speculate that another possible reason is that
the virus-specific CD4* or CD8" T cells are rapidly activated,
reaching the peak within 1 week post-antigen exposure and then
dropping to a low level about 1 month post-RI.

Similar with the documented studies,?”3® TEM are the main
phenotypic subsets of virus-specific CD4* or CD8"* T cells 6-months
post-BA.2.3 BTI. What's more, there was an observed increase in the
TEM subset and a decrease in the Tnaive subset of virus-specific
CD4" memory T cells were occurred between T3 and T4 in both the
RI group and NRI group, suggesting that Omicron BA.5 exposure can
promote the differentiation of virus-specific memory T cells, even
though among non-seroconversion adolescents in NRI group.®* In
addition, the TEM subset is significantly higher in the NRI
group compared to the Rl group at T3 before RI, suggesting that
this subset may play an important role in viral clearance and pre-
vention of RI.2%:33

This study has two limitations. First, our focus was primarily on
virus spike-specific humoral and cellular immunity, without assessing
the function of other key proteins. Second, we only obtained PBMCs

during convalescent stages at 6- and 12-intervals, which limits our

understanding of the dynamic changes in T cell responses during the
acute stage post-Omicron BA.2.3 BTl or Omicron BA.5 RI. Therefore,
more prospective studies with multiple followed-up time points and
enough clinical samples are needed to confirm and expand the
findings presented in this study.

In conclusion, we have demonstrated the dynamic changes in
antibody and T cell responses about 1 year post-Omicron BA.2.3 BTI,
with or without subsequent Omicron BA.5 RI, in adolescents. The
emerging Omicron subvariants can extensively escape the humoral
immunity elicited by the previous circulating Omicron subvariants BTI
and RI, while the robust virus-specific T cell responses are observed
in most of the adolescents against both the previous and current
circulating Omicron subvariants. More importantly, additional antigen
exposure following Omicron BA.2.3 BTl can promote the differenti-
ation of memory T cells, which may play a crucial role in clearing the
virus and preventing Rl. Therefore, updated COVID-19 vaccines
targeting a more recent circulating variant are needed to provide
protection against the newly emerging SARS-CoV-2 variants among
adolescents.
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FIGURE 5 Memory phenotype differentiation of Omicron BA.2- or CH.1.1-specific memory T cells in adolescents. (A) Flow cytometry plots
in Omicron BA.2 and CH.1.1 MPs stimulated groups showing spike-specific memory CD4" and CD8" T cell phenotypes in ex vivo assay.
Frequency of different spike-specific memory CD4* T cell (B) and CD8" T cell (C) phenotypes in Omicron BA.2 and CH.1.1 groups at 6- and
12-month. PBMCs were collected from the adolescents at 6- and 12-month post-Omicron BA.2.3 breakthrough infection (BTI) with or without
subsequent Omicron BA.5 reinfection (RI). Bars indicate median and interquartile range (IQR). Each subset of memory phenotype differentiation
is color-coded, and data is summarized in the pie charts in panels (B and C). No significant differences were observed between pies using a
permutation test in each panel. Wilcoxon matched-pairs signed rank test and paired t-test were performed in panels (B and C), and p < 0.05 was
considered statistically significant. PBMCs, peripheral blood mononuclear cells.
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