SCIENCE ADVANCES | RESEARCH ARTICLE .

Check for
updates

CORONAVIRUS

Epidemic outcomes following government responses to
COVID-19: Insights from nearly 100,000 models

Eran Bendavid'*** and Chirag J. Patel®

Government responses to COVID-19 are among the most globally impactful events of the 21st century. The extent
to which responses—such as school closures—were associated with changes in COVID-19 outcomes remains un-
settled. Multiverse analyses offer a systematic approach to testing a large range of models. We used daily data on
16 government responses in 181 countries in 2020-2021, and 4 outcomes—cases, infections, COVID-19 deaths,
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and all-cause excess deaths—to construct 99,736 analytic models. Among those, 42% suggest outcomes im-
proved following more stringent responses (“helpful”). No subanalysis (e.g. limited to cases as outcome) demon-
strated a preponderance of helpful or unhelpful associations. Among the 14 associations with P values < 1 x
107, 5 were helpful and 9 unhelpful. In summary, we find no patterns in the overall set of models that suggests
a clear relationship between COVID-19 government responses and outcomes. Strong claims about government

responses’ impacts on COVID-19 may lack empirical support.

INTRODUCTION

COVID-19 was—and to a large extent remains—the most meaning-
ful health event in recent global history (I). Unlike the 2003 Severe
Acute Respiratory Syndrome (SARS) epidemic, it spread globally;
unlike Zika, everyone is at risk of infection with COVID-19; and
unlike recent swine flu pandemics, the disease severity and mortal-
ity from COVID-19 were so high it led to life expectancy reversals
in many countries (2, 3).

If COVID-19 was a defining health event, the global responses to
COVID-19 were a defining health policy experience (4, 5). The
swiftness of global responses, their extensiveness, and direct impli-
cations for billions of people’s lives were historically unique: The re-
sponses to the 1918 influenza pandemic, in comparison, were
largely localized, while the global response to the HIV pandemic
was slower and smaller in extent than the response to COVID-19 (6,
7). Government responses to COVID-19 intended to limit the virus’
spread and disease burden, using encouragements or mandates on
schools, travel, and masks, among others, as well as income support
or debt relief to enable social distancing.

The rapid spread of the virus in early 2020 meant that many
COVID-19 responses were implemented swiftly, based on partial in-
formation, often from simulation models, about transmission mecha-
nisms and about anticipated benefits (8, 9). The swiftness of spread
afforded effectively no time for careful studies of policy effects, and
favored emergency measures implemented with relatively little infor-
mation about the trade-offs of alternative policy options (10).

Many approaches are needed to understand the impacts of govern-
ment responses to the pandemic. Qualitative approaches may help
with understanding why different governments used different policy
responses (for example, why Norway implemented shelter-in-place
while Sweden did not). Observational epidemiologic studies may
help characterize the relationships between different policy responses
and COVID-19 outcomes, while meta-analyses and systematic re-
views can summarize the observational evidence on government re-
sponse impacts (11, 12). Experimental evidence is not available for
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understanding the impact of policies: No government studied its re-
sponses directly with trials or experiments. As a result, one common
thread is that the data available for studying policy responses are messy
and complex, resulting in analyses that may also be complex (13). For
example, most policy responses were implemented concurrently or in
close sequence, posing challenges to identifying the unique impacts of
individual policies (14). Existing studies of COVID-19 response im-
pacts range from unrealistically positive to dismissively negative, fur-
ther complicating balanced assessments (15-17).

Despite the complexity of the endeavor, its importance is undi-
minished. Definitive studies of government response impacts on the
virus’ spread and disease burden would be enormously helpful for
present decisions and future pandemic planning. The dearth of pro-
spective and randomized studies means that, likely, no single study
may settle this question.

In this analysis, we attempt to advance the science of government
responses to COVID-19 by taking a multiverse approach to this topic
(18-21). Multiverse analyses elevate epistemic humility by relaxing
the number of subjective choices in the research design process. Mul-
tiverse approaches also prompt analysts to comprehensively probe the
space of plausible models and results of assumptions. By expanding
the number of analyses, they provide information about the stability
of relationships’ magnitude and direction due to study design param-
eters and choice. We take this approach because (i) the data available
for analysis are complex and rich, making possible a large number of
plausible analyses and (ii) we aspire to limit the role of data and mod-
el choices in driving the results, or “researcher degree of freedom”
(22). The emerging distributions of possible relationships can be con-
sidered an update to the strength of hypotheses about the effective-
ness of COVID-19 responses that are in contrast with much of the
highly cited literature. At the very least, the breadth of possible find-
ings provides an understanding of what can or cannot be answered
with limited observational data.

RESULTS

The daily analytic dataset includes 128,662 observations, an average of
711 observations in 181 countries in 2020 and 2021. The weekly and
monthly datasets contain 18,795 and 4198 observations (an average
of 103 and 23 observations per country, respectively). The average
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number of observations in each analysis was 18,930 and ranged for
reasons such as period of aggregation (monthly, weekly, or daily), par-
tial availability of outcome (especially for excess deaths), or outcome
counts of zero, which prevent growth calculations. The earliest date
with nonzero COVID-19 outcomes data is 22 January 2020.

Table 1 summarizes government response data. Across all coun-
tries, the containment measures that comprise the stringency index
peaked, on average, in April or May 2020. Health system responses,
especially access to testing and vaccine availability, peaked later and
remained at their peak through the end of the study period in
December 2021. The country with the highest stringency index for
the entire study period was Honduras (average 73.8; China and the
United States, by comparison, had average stringency of 69.7 and
56.3, respectively). Figure S1 provides an illustrative example of the
time trends of four government responses in four countries: strin-
gency index, school closure, workplace closure, and vaccine avail-
ability in the United States, South Korea, Sweden, and India.

Figure 1 provides a visual representation of the variations used to
generate all 99,736 models. Of all models, 41,748 (42%) had a point
estimate in the “helpful” direction, and 57,988 (58%) in the “unhelpful”
direction (we use “helpful” as shorthand for a negative p; and
“unhelpful” for a positive p;, without implying a causal link). The
number of significant associations was similar between the helpful

and unhelpful models: 3692 (8.8%) of the helpful and 3811 (6.7%) of
the unhelpful associations were statistically significant using a false
discovery rate criteria (23).

Figure 2 illustrates the direction of the evidence among the anal-
yses. Each panel demonstrates the portion of the models that are
helpful and unhelpful, by subgroup. Figure 2A demonstrates that
about half of all models suggest government responses were helpful,
and half unhelpful when examining either of the three indices
(stringency, government response, and economic support). A simi-
lar picture emerges when looking at subgroups by time period
(about 50:50 for early 2020, all of 2020, or the entire time period),
outcome measure (infections, cases, COVID-19 deaths, or excess
deaths), dataset aggregation period (daily, weekly, or monthly),
fixed effects (with or without), and covariates (with or without). The
only subgroup level where the balance shifts away from 50:50 is the
model type. Models 1, 3, and 5 range from 60 to 80% in the unhelp-
ful direction, while models 2, 4, and 6 range from 55 to 70% in the
helpful direction. When removing model 1, the simplest and least
balanced (80% of results in the unhelpful direction) model, then,
among the remaining 82,864 estimates, 46% have a point estimate in
the helpful direction and 54% in the unhelpful direction. Figure 3
shows that the distribution of the standardized effect sizes (proxied
using the ¢-statistic from each model) for the overall set of 99,736

Table 1. Descriptive features of COVID-19 government response data. The top eight responses are categorized by OxCGRT as “containment measures,” the
next two as “economic measures,” and the next six as “health system measures.” The composite indices are shown at the bottom. The mean averages the
response across all countries from 22 January 2020 to 21 December 2021. Max month indicates the month in which the indicator was highest across all countries.
Max country refers to the country in which the indicator was highest over the entire period.

Response N Min Max Mean Max month Max country
School closure 126,946 3 1.6 4/20 Saudl Arabla
Workplace closure 123,319 0 3 1.4 4/20 Chlle
Canceling publlc 123,801 2 1.4 4/20 Chma
events |

gath nn 80 0 hin
Closmg publlc 127,661 2 0.6 4/20 Argentin
transport
“Stay-at-| home 128,311 0 3 1.0 4/20 China
orders
Restrlct mternal 127,029 0 2 0.8 4/20 Jamaica
travel
Restrlct |ntema| 122,104 0 4 2.5 4/20

travel

10

Income support . , 0 .
Debt reI|ef s 128510 e 0 s 2 09 6/20 s HongKong s
Pub||c |nfo PO 128509 e 0 2 18 5/20 s Uzbeklstan
campalgns
Access o testmg s 128510 e 0 3 19 e 12/21 [ Chma s
Contacttracmg 128510 0 2 13 11/20 ‘Smgaporém”m
Maskmg poI|C|es. 128242 e 0 4 . 24 e 4/21 s Slngapore.
Vaccme ava|lab|||ty e 128829 e 0 5 17 e 1 2/21..‘,‘ P Israel
Protectlng elderly e 127773 e 0 3 13 e .‘,4/20 s Hong Kong s
Stnngency |ndex . 125670 e 0 100 PR 524 e .‘,4/20 s Honduras
Government 125670 e 0 . 912 PR 510 e 4/20 s Italy s
response | mdex
o support mdex e 128510 e 0 . 1 00 PR 400 e 6/20 s Cyprus P
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Fig. 1. Analysis and data variations. The product of all the variations (147,744)—19 response types (policies), 9 outcomes, 6 models, 3 time periods, 3 time aggregations,
2 denominators, 2 leads, 2 fixed effects, and 2 covariates—is greater than the number of models actually run (99,736). This is because some combinations were not fea-
sible or reasonable. For example, only one lead (1 month) was used when the dataset was aggregated at the monthly level.

models and for five subsets are evenly and narrowly centered around
zero (with small deviations from zero among the most skewed mod-
els in Fig. 2).

The five response-outcome pairs with the most consistent associa-
tions in the helpful and unhelpful directions are shown in Table 2. The
number of infections makes up three of the five most consistently
helpful associations, while excess all-cause deaths and COVID-19
deaths make up the outcome in the majority of unhelpful associations.
Among the 14 most extremely strong associations with P < 1 x 107,
5 were in the helpful direction and 9 were in the unhelpful direction.

Last, a total of 12 models could be applied to the simulated mea-
sles dataset (six models, each with and without fixed effects). All
results had effect sizes in the helpful direction, with all P < 3.1 X
107% and ¢-statistic < —5.3.

DISCUSSION

In this study, we perform a multiverse analysis of nearly 100,000
ways of probing the relationship between COVID-19 government
responses and outcomes in 181 countries. The goal is to create a
multiverse of plausible analyses and assess the sensitivity of the re-
sults to these choices. Exploring the multiverse for a question of
high importance may be useful where there is no consensus. In this
study, we found no clear pattern in the overall set of analyses or in
any subset of analyses. We are left to conclude that strong claims
about the impact of government responses on the COVID-19 bur-
den lack empirical support.

Inferences from this analysis deserve careful consideration, in-
cluding a clear understanding of what this study cannot illuminate.
First, none of the models tested can tell the extent to which any gov-
ernment response could have improved COVID-19 outcomes. Per-
haps with another virus, other implementation strategies, or different

Bendavid and Patel, Sci. Adv. 10, eadn0671 (2024) 5 June 2024

populations, school closures could have extinguished transmission.
Nor can we learn from this study what COVID-19 outcomes would
have been like in the absence of these responses. Second, our analysis
is global in scope and examines government responses and COVID-
19 outcomes at the level of countries. This is suitable for inferring
global patterns and trends but cannot exclude patterns at state, dis-
trict, community, or even neighborhood levels.

Third, and perhaps most importantly, we cannot conclude that
there is compelling evidence to support the notion that government
responses improved COVID-19 burden, and we cannot conclude
that there is compelling evidence to support the notion that govern-
ment responses worsened the COVID-19 burden. The concentration
of estimates around a zero effect weakly suggests that government
responses did little to nothing to change the COVID-19 burden.

This conclusion departs meaningfully from many scientific
studies of government responses. For example, a highly cited study on
this topic notes that “Our results show that major non-pharmaceutical
interventions—and lockdowns in particular—have had a large effect
on reducing transmission” (9). Such conclusions are common in the
scientific literature (table S1), but our analysis—extensive in scope
and outcomes—suggests that such strong claims lack empirical
justification.

The contribution of any study can be thought of as an update
to the reader’s Bayesian prior. Most scientific studies aim to strength-
en the reader’s posterior belief in a hypothesis, while this study ex-
plores the opposite: We argue that strong beliefs about the impact
of COVID-19 government responses, as reflected in the studies in
table S1, may deserve weakening.

We propose several ways to reduce such uncertainty in the design
and evaluation of public health programs and policies. Perhaps the
most important foundation for a better understanding of policy
impacts is prospective, representative (or population-level), and
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Fig. 2. Portion of models with point estimates in the helpful or unhelpful direction, by group. The portion of models with helpful and unhelpful associations, by
domain. Each panel includes the overall distribution of effects (bottom bar), and the models that were significant (solid colors). Panel (A) shows the distribution for each
of the three government response indices, panel (B) for the four outcome types (cases, infections, COVID-19 deaths, and all-cause excess deaths), panel (C) for the three
study periods, panel (D) for models with and without fixed effects, panel (E) for the three time aggregations, and panel (F) for the six models (1 bottom, 6 top). The models
are indexed as L (levels) or G (growth), with d indicating a difference.
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Fig. 3. Distribution of standardized effect sizes for all analyses and selected groups. The t-statistics are used as a proxy for the standardized effect size of different
models. The count of models with t-statistics in each interval [x, x + 0.25) for x ranging from —20 to +20 is shown in each panel (intervals with 0 models are not shown).
The portion of the models that are significant using the false discovery rate is represented by the shade. In (A), for example, the t-statistic interval with the largest count
of models is between 0.75 and 1.00. None of those models are significant. Panel (A) includes all models; (B) includes models for the year 2020; (C) includes models with
the stringency index as the predictor; (D) includes models with cases as the outcome; (E) includes models designed to assess the relationship between the policy level
and the outcome level (model 1); and panel (F) includes models designed to assess the relationship between the policy level and the change (growth) in the outcome

(model 4).

Bendavid and Patel, Sci. Adv. 10, eadn0671 (2024)

-20

Helpful

Helpful

-10

Helpful

All analyses

‘ 0
! 3
0 10 20
t-stat bin Unhelpful
Stringency index
E 0
z O
0 10 20
t-stat bin Unhelpful
Level on level models
| 0
1 »
0 10 20
t-stat bin Unhelpful

5 June 2024

Count in bin

Count in bin

Count in bin

2000

1500

1000

500

1500

1000

500

600

400

200

-20

-20

-20

Helpful

Helpful

Helpful

Year 2020

et : o

20

10
t-stat bin Unhelpful

20

10
t-stat bin Unhelpful

Growth on level models

20

10
t-stat bin Unhelpful

50f9

%202 ‘TT 1snbny uo 610:80us 195" MM/:Sd1Y Wo. 4 papeojumod



SCIENCE ADVANCES | RESEARCH ARTICLE

Table 2. Five most consistent associations in the helpful and unhelpful directions. IHME, Institute for Health Metrics and Evaluation; NYT, the New York Times;
Econ, The Economist; CSSE, Center for Systems Science and Engineering, the Johns Hopkins Covid-19 Dashboard.

Outcome Government response

% Helpful/Unhelpful % Significant

Most commonly helpful

Infections

Infections
Excess deaths (NYT)
Infections

Excess deaths (Econ)

Cases (IHME)
Cases (IHME)
Infections

Infections

Infections Stringency index

Most commonly unhelpful

Excess deaths (Econ) Accégé totestlng
Excess deaths (NYT)

Excess deaths (Econ)

Infections
Deaths (CSSE)
Most commonly unhelpful and significant

Deaths (IHME) Government response index
Deaths (HME) Stringencyindex
Deaths (CSSE) \gency index

Deaths (IHME) Workﬁlééé closure
Deaths(Css®) Government response index

well-measured data collection platforms. The benefits of such plat-
forms are demonstrated in the invaluable understanding of COVID-
19 vaccine impacts from large registries in Israel and Qatar (24, 25).
Large national prospective data platforms have been a long-lasting
challenge in many countries, including the United States; local plat-
forms, which may be easier to implement, could facilitate under-
standing at smaller scales. In the context of assessing government
response, improved measurements of responses would be impor-
tant. The OxCGRT is a critical resource, but a better understanding
of implementation, enforcement, and compliance could further un-
derstand effect heterogeneity. Mitigating uncertainty due to flexible
analytic design includes public registration of hypotheses in a public
repository before analysis, like the process that precedes many ran-
domized clinical trials (26).

The issue of subjecting government responses to experimentation
is complicated. Trials of public health programs would yield ex-
tremely valuable information. Such trials may be thorny on practical
or ethical grounds. This deserves further consideration, however,
given the enormous stakes and inevitable trade-offs involved in re-
sponses such as mandatory school or business closures. A final im-
portant consideration that could improve the quality of evidence is
keeping the issue at hand away from special and financial interests.
The polarization that beset the scientific community has made ask-
ing and probing some questions difficult (27, 28). Keeping scientific

Bendavid and Patel, Sci. Adv. 10, eadn0671 (2024) 5 June 2024
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questions separate from public decisions could enable a spirit of
greater collaboration around such issues.

The limitations of this study fall into four broad groups. First, it
may be that a consistent signal—either of government response help-
fulness or unhelpfulness—is contained in the data or models but not
identified in this analysis. We encourage further probing of the re-
sults in our Shiny app. Second, the models are limited in their causal
strength in the sense that a counterfactual to the policies implement-
ed cannot be inferred. Two features temper this limitation: the use of
leads such that the outcome is measured 2 weeks or a month follow-
ing policy response and the use of fixed effects that assess “within
country” associations and control for all time-invariant effects. While
covariates with time-varying information on—say, health care capac-
ity—may provide additional nuance, this information would be use-
ful if it were available and comparable for all (or many) countries and
time-varying at a daily or monthly level. We note that all our models
examined short-term epidemic outcomes following policy responses
(2 or 4 weeks), but that long-term outcomes remain an important but
largely unexamined area of study. Third, country-level data hide
more nuanced patterns that may be discernible in analyses of more
granular data. Last, despite efforts to limit investigator choices, we
made choices in the design of the study, and those may limit infer-
ences. The data and models used in this analysis are open for other
investigators to use, modify, or reassemble.
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In sum, this comprehensive analysis of government responses
and COVID-19 outcomes fails to yield clear inferences about gov-
ernment response impacts. This suggests that strong notions about
the effectiveness or ineffectiveness of government responses are not
backed by existing country-level data, and scientific modesty is war-
ranted when learning from the responses to the COVID-19 pandemic.

METHODS

This analysis tests the relationships between government responses
and COVID-19 outcomes. We test the extent to which COVID-19
outcomes improved or worsened following government responses.
We recognize that the links between government responses and
outcomes are mediated, for example, by the power of the govern-
ment to enforce a response such as mask mandates. We also rec-
ognize that this approach cannot fully assess the counterfactual
reality such as “what would outcomes have been had the govern-
ment kept schools closed for longer?” Rather, we assess the ob-
served relationship, implicitly assuming that if responses and
outcomes go in opposite directions (for example, cases increase
after easing mask requirements), this is generally consistent with
the success of the government response. Conversely, if responses
and outcomes go in the same direction (for example, cases in-
crease after increasing mask requirements), this is evidence gener-
ally inconsistent with success.

The current paper presents the results of nearly 100,000 reason-
able ways of assessing the relationship between government re-
sponses and COVID-19 outcomes. Government responses are
represented as individual policies such as school closures, or as
indices that aggregate the intensity and type of several policies. The
rest of this section details the dimensions used in this analysis.

Government responses

The primary data source for government responses is the Oxford
COVID-19 Government Response Tracker (OxCGRT). The OxCGRT
recorded government responses daily in more than 180 countries us-
ing a standardized approach from publicly available sources such as
news articles or government briefings. The OxCGRT recorded the of-
ficial responses at the national level, not their implementation or
enforcement. The complete details of the OxCGRT data-generating
processes are publicly available (4, 5).

Government responses fall into three primary domains: contain-
ment and closure (such as school closures and restrictions on gather-
ings; eight ordinal variables), health system responses (such as
contact tracing and mask mandates; six ordinal variables), and eco-
nomic relief policies (income support and debt relief; two ordinal
variables). Because government responses may work in concert or
synergistically, the OXCGRT constructs composite indices that ag-
gregate the individual responses. We use three composite indices: the
“government response index” which pools all 16 government re-
sponses; the “stringency index” which pools the eight containment
and closure variables and one health system response, and the “eco-
nomic support index” which pools the two economic relief policies.
We use a version of the indices that combines government responses
for vaccinated and unvaccinated populations using a weighted aver-
age based on the portion of the population that is vaccinated. All 19
variables (16 individual variables and 3 indices) are available daily for
the 181 countries for which we have outcomes data from 22 January
2020 to 31 December 2021.

Bendavid and Patel, Sci. Adv. 10, eadn0671 (2024) 5 June 2024

COVID-19 outcomes

We use nine different outcome measures. We extracted two from the
Johns Hopkins COVID-19 dashboard: daily confirmed COVID-19
cases and deaths (29). We extracted three outcomes from the Insti-
tute for Health Metrics and Evaluation (IHME): other estimates of
daily COVID-19 cases and deaths, and daily estimates of infections
(30, 31). The estimates of infections are modeled on the basis of age-
specific infection fatality rates and age distribution of deaths. Last,
we took weekly or monthly excess all-cause mortality from the New
York Times (35 countries), the Financial Times (99 countries), the
World Mortality Dataset (102 countries), and The Economist (181
countries) (32-35). A comparison of data sources for excess mortal-
ity is available elsewhere (36).

Statistical models

We use six statistical models. The models represent several patterns
of relationships between government responses and COVID-19
outcomes. We chose models that broadly represent a stated expected
impact of government response policies (such as, for example, mod-
els that assess a “flattening of the curve”), and models that capture
historical patterns of public health efforts that succeeded in reduc-
ing infectious disease burden such as measles vaccination or polio
elimination (8, 37, 38). (We test the models on a dataset of measles
cases in the United States; see Plausibility Analysis below.) The
formal models are presented below. Each model was estimated
such that the coefficient on the Policy variable (; below) would
be negative if the government response was associated with re-
duced COVID-19 burden (we use “helpful” as shorthand for this
relationship, without causal implication)

Y o4m = Bo + B, Policy,, + kaft +0,+A +¢, (1)

. kyrk
Yot4my — Yoo = Bo + By Policy, + WX, + 8, + X, + ¢, (2)
Yc(t+n) - th = ﬁO + Bl [POZiCyct - POliCYc(t—l)] + (3)
pXE 48,40, +eg
Yc(t+n) . k vk
7 =By + B, Policy,, + n* X + 06, + X + ¢, ()
c(t+n-1)
YC(t+n) Y,

= By + By Policy,, + p* X5 + 8.+ 4, +¢, (5)
Yc(t+n—1) Yc(t—l)

YC(t+n) _ Y,
Y

c(t+n-1)

v =PB,+B; [Policya —Policyc(t_l)] +
c(t—1)

pExE 48,40, +e,

(6)

In each model, Y is the outcome of interest, ¢ indexes a country,
t indexes the observation time, and n represents the duration between
the government response and outcome observation (2 or 4 weeks/
1 month). kaft represents a k-wide matrix of covariates, &, repre-
sents country fixed effects, and A are time fixed effects. Country
fixed effects remove all time-invariant differences between coun-
tries, such that the effects are estimated within the country. Time
fixed effects control for temporal trends shared among all countries.
All models were estimated using ordinary least squares.
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To facilitate an intuitive understanding of the model, we use a
concrete example with COVID-19 deaths as the outcome and strin-
gency index as the policy. Model 1 tests the extent to which higher
stringency is associated with fewer COVID-19 deaths 2 or 4 weeks
later. Model 2 tests the extent to which higher stringency is associ-
ated with fewer COVID-19 deaths 2 or 4 weeks later, compared with
the day of observation. Model 3 tests the extent to which increasing
stringency is associated with fewer COVID-19 deaths 2 or 4 weeks
later, compared with the day of the increase (or, conversely, decreas-
ing stringency associated with more COVID-19 deaths). Model 4
tests the extent to which higher stringency is associated with a lower
growth rate of COVID-19 deaths 2 or 4 weeks later. Model 5 tests
the extent to which higher stringency is associated with a growth
rate of COVID-19 deaths 2 or 4 weeks later that is lower than the day
of observation. Model 6 tests the extent to which increasing strin-
gency is associated with a growth rate of COVID-19 deaths 2 or
4 weeks later that is lower than the day of the increase.

Analytic and data variations
We analyzed a total of 99,736 models. The data were analyzed at the
daily, weekly, or monthly level of aggregation, allowing for smooth-
ing of idiosyncratic variation in daily data. Covariates included the
number of borders (“island effect”), the portion of the population
over age 60, the total fertility rate (to capture age structure), and the
daily mobility (percent of baseline) from Google, obtained from
ITHME. Covariates were either included or excluded as a bloc. Coun-
try and time fixed effects are commonly used in econometric mod-
els to control for time-invariant between-country differences and
shared time patterns. Including country fixed effects, in particular,
yields a pooled within-country association. For example, changes in
the U.S. stringency index are assessed in relation to COVID-19
growth rates in the United States. Models 1 to 3 are analyzed using
totals or per-capita outcomes (per-capita outcomes are identical to
totals with growth models 4 to 6). To prevent population differences
from overwhelming estimates, models with total outcomes include
fixed effects. Last, we analyze all models over three time periods: the
early pandemic (January 2020 to June 2020); the first year (all of
2020); and the first 2 years (2020 to 2021).

Standard errors are clustered by country in all analyses. Statisti-
cal significance is assessed using a false discovery rate of 0.05 (23).

The analytic code is provided along with the analysis. In addi-
tion, the entire set of 99,736 model results can be explored using a
Shiny app at https://eranbendavid.shinyapps.io/CovidGovPolicies/.

Plausibility analysis

With such a large number of models, we conducted a separate anal-
ysis to test whether the models would identify effects, should ones
exist within the data. Specifically, we use our approach to study the
introduction of measles vaccination in the United States, widely re-
garded as a public health success (39, 40). Following the licensing of
the measles vaccine in 1963/1964, the number of reported measles
cases dropped from approximately 400,000 annually in the 5 years
before the licensing to 30,000 annually in the 5 years after (41, 42).
We created a synthetic dataset with measles cases proportional to
the state population between 1954 and 1990 and assigned a vaccina-
tion adoption year to each state between 1964 and 1967 with an
effect size of around 93% (equivalent to the case rate decline in the
entire United States). We thus construct a dataset with different
units (states), an efficacious policy intervention (vaccination), and

Bendavid and Patel, Sci. Adv. 10, eadn0671 (2024) 5 June 2024

different policy onset (1964 to 1967). We then applied our models to
this dataset, with cases as the only outcome, scheduled vaccination
onset as the main policy predictor, and fixed effects as with the
main analysis.

Supplementary Materials
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Fig. S1

Table S1

Legend for data file S1
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