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The absence of a long COVID (LC) or post-acute sequelae of COVID-19 (PASC) diagnostic has profound 
implications for research and potential therapeutics given the lack of specificity with symptom-based 
identification of LC and the overlap of symptoms with other chronic inflammatory conditions. Here, 
we report a machine-learning approach to LC/PASC diagnosis on 347 individuals using cytokine hubs 
that are also capable of differentiating LC from chronic lyme disease (CLD). We derived decision tree, 
random forest, and gradient-boosting machine (GBM) classifiers and compared their diagnostic 
capabilities on a dataset partitioned into training (178 individuals) and evaluation (45 individuals) sets. 
The GBM model generated 89% sensitivity and 96% specificity for LC with no evidence of overfitting. 
We tested the GBM on an additional random dataset (106 LC/PASC and 18 Lyme), resulting in high 
sensitivity (97%) and specificity (90%) for LC. We constructed a Lyme Index confirmatory algorithm to 
discriminate LC and CLD.

Keywords  COVID-19, PASC, Long COVID, Cytokines, Chronic lyme disease (CLD), Myalgic 
encephalomyelitis-chronic fatigue syndrome (ME-CFS), Machine Learning/AI

LC or PASC is a clinical unmet need affecting around 20–30 million Americans and many more worldwide. A 
non-subjective diagnosis for LC/PASC has remained elusive even after multiple reports of symptoms for LC. 
Symptom-based classification of immunologic diseases including autoimmune diseases and chronic inflammatory 
diseases can be difficult because of non-specific or overlapping symptoms1. A recent report suggested the use of 
cytokine hubs to more precisely categorize autoimmune diseases with the stated oal of using the information as 
therapeutic targets as the expansion of immune-based therapy grows1. The heterogeneity of immune-mediated 
inflammatory diseases (IMIDS) described in this publication also applies to post-infectious immune-mediated 
and inflammatory conditions currently in the discussion of LC/PASC.

The symptoms of LC/PASC have been well described in the literature2–4 and a recent article2 concluded 
that fatigue, post-exertional malaise, and brain fog were diagnostic of LC. This conclusion, however, identified 
symptom presentations of LC/PASC that overlap significantly with chronic lyme disease (CLD), myalgic 
encephalomyelitis/chronic fatigue syndrome (ME/CFS), and other post-infectious chronic inflammatory 
disorders5–7. Clear etiological and pathophysiological differences exist in these chronic inflammatory conditions 
that necessitate precision medicine-tailored therapies.

We previously used machine learning to distinguish long COVID from active COVID-19 infections using 
immune/inflammatory biomarkers2. Similarly, there are multiple articles on machine learning in acute COVID-
19 that focus on forecasting of disease and mortality8,9 or on the analysis of CXR or images10–12. Here, we present 
a very different machine learning/cytokine hub approach to diagnose LC/PASC and differentiate LC/PASC from 
CLD using immune/inflammatory biomarkers in plasma.
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Methods
Patients
The Chronic Covid Treatment Center Institutional Review Board reviewed and approved the protocol. All 
participants provided written informed consent to participate in the research. The date of acute COVID-19 
infection was defined as the date of the first positive SARS-CoV-2 test result or COVID-19 symptom onset. 
Healthy control participants had no known history of SARS-CoV-2 infection and a negative anti-NP assay at the 
time of participation. All methods were performed in accordance with the relevant guidelines and regulations 
as set forth by the review board. All patients were over 18 years old.

Mild Acute COVID-19:

1.	 Fever, cough, sore throat, malaise, headache, myalgia, nausea, diarrhea, loss of taste and smell,
2.	 No sign of pneumonia on chest imaging (CXR or CT Chest),
3.	 No shortness of breath or dyspnea.

Moderate Acute COVID-19:

1.	 Radiological findings of pneumonia fever and respiratory symptoms,
2.	 Saturation of oxygen (SpO2) ≥ 94% on room air at sea level.

LC/PASC
Inclusion criteria for individuals in the LC group were previous confirmed or probable COVID-19 infection 
(according to World Health Organization guidelines) age ≥ 18 years; and persistent symptoms > 12 weeks after 
initial COVID-19 infection. Symptoms included those previously described and scored4.

Inclusion criteria for healthy controls (HC) were age ≥ 18 years, no previous SARS-CoV-2 infection and a 
negative history taken as part of registration in the Chronic COVID Treatment Center (CCTC).

Chronic lyme disease (CLD)
Patients presented to the CCTC with a history of fatigue, brain fog, and post-exertional malaise that pre-dated the 
SARS-CoV-2 pandemic (pre-2020) and persisted for greater than 6 months (as per the ILADS Working Group)13.

Presence of Borrelia Burgdorferi sp were confirmed by 2-tiered immunologic testing which includes 
immunoblot testing. Presence of other tick-borne organisms was noted but not required for definition of CLD 
as previously described13.

Multiplex cytokine/chemokine profiling
Plasma collected in plasma preparation tubes (PPT, BD Biosciences, San Jose CA) as used for cytokine 
quantification using acustomized 14-plex bead based flow cytometric assay (IncellKINE, IncellDx, Inc) on a 
CytoFlex flow cytometer as previously described using the following analytes: TNF-a, IL-4, IL-13, IL-2, GM-CSF, 
sCD40L, CCL5 (RANTES), CCL3 (MIP-1a), IL-6, IL-10, IFN-g, VEGF, IL-8, and CCL4 (MIP-1b)2. For each 
patient sample, 25 μL of plasma was used in each well of a 96-well plate. Samples were analyzed on a Beckman 
Coulter CytoFlex LX 3-laser flow cytometer using Kaluza Analysis Software (Beckman-Coulter, Miami, FL). All 
statistical analysis was performed using the Mann–Whitney test and a P value ≤ 0.05 was considered statistically 
significant.

Data acquisition and processing for machine learning model construction
To construct a working dataset we selected cytokine profiles from three disease states: Not Perturbed (NP), 
LC/PASC, and CLD. The Not Perturbed class represented the aggregation of unaffected (healthy controls) and 
mild- moderately affected COVID-19 individuals. We combined the categories based on the lack of chronic 
immunologic perturbation as previously published4 and as present in chronic disease states like PASC and 
CLD. The absence of statistical difference between the two states when comparing the IncellKine cytokine 
profiles (p-value > 0.05) using a Mann–Whitney U-test further supports this classification. Severe COVID-19 
individuals, corresponding to individuals affected by COVID-19 with severe manifestations and immunological 
perturbations, were excluded. Outliers were removed using an isolation forest (contamination parameter = 5%), 
generating a dataset consisting of 67 Not Perturbed, 103 PASC, and 53 CLD. Each individual had cytokine profiles 
derived from the incellKINE assay (14-plex cytokine panel), the LHI (long hauler index), and SI (severity index) 
calculated according to Eqs. (1) and (2), as reported in Ref.2:

The dataset was then imported into Python using the Pandas library14–16. Data was partitioned with 
stratification using the train_test_split function from the model_selection module sci-kit-learn17. An 80% of 
the data was for training and a 20% hold-out evaluation split was used to obtain performance metrics and identify 
overfitting. Table 1 contains the number of instances in the pre-split dataset, training, and evaluation partition.
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Construction of tree‑based machine learning classifiers: decision tree, random forest, and 
gradient boosting machine
In our study, we employed three tree-based machine learning classifiers: a decision tree, a random forest, and 
a gradient-boosting machine. The decision tree and random forest were implemented using the sci-kit-learn 
library, whereas the gradient-boosting machine utilized the LightGBM library. Hyperparameter optimization 
for each model involved a range of settings. For the decision tree, parameters like criterion, class weight, splitter, 
maximum depth, minimum samples split, and leaf were adjusted. The random forest model’s parameters included 
the number of estimators, criterion, maximum depth, minimum samples split and leaf, and bootstrap options. 
For the gradient-boosting machine, we varied the learning rate, number of estimators, minimum data in leaf, 
and depth. Hyperparameter tuning was conducted using tenfold cross-validation with three repeats, selecting 
the best model based on the F1 score. Performance was assessed on a 20% hold-out evaluation split. A custom 
classification report, which included recall, specificity, precision, negative predictive value, and F1 score was 
used to calculate performance metrics and determine if there was model overfitting. The model demonstrating 
the highest performance was assigned to the best_model variable.

Development of a lyme index for further differentiation of PASC and lyme
To confirm the differentiation of CLD and LC/PASC individuals following screening, and reduce classification 
errors, two new features were generated. These features were part of the Lyme Index. To develop these features 
we implemented an approach based on immunological significance and domain expertise. We generated the 
features through a programmatic method that implemented combinations of different operations on the features 
(ratios, powers, multiplication, and sums). This approach focused on placing important cytokines for CLD in the 
numerator and for LC/PASC in the denominator. The generated sets of features were filtered to remove potential 
zero-divisions and curated by domain experts to confirm their biological relevance.

To determine the Lyme Index’s ability to classify CLD patients, we used a dataset comprised of 25 randomly-
selected CLD individuals. A decision tree was trained using the 2 features and tested on the dataset. Because only 
one class was present (CLD), we only calculated sensitivity, PPV (precision), and accuracy.

Prediction of patient disease state on blinded records using the best‑performing model
To determine the predictive capability of the highest-performing model upon deployment, we enrolled 125 
randomly selected individuals. Individuals were processed to identify clinical assessment data, confirming their 
disease state (NP, LC/PASC, or CLD). Individuals from the dataset were confirmed to belong to either LC/PASC 
or CLD disease states. Patients without clinical assessment data and/or a diagnosis different from the classes 
in the model were removed to properly calculate performance metrics. These criteria resulted in the removal 
of only one patient profile. The resulting dataset was composed of 124 individuals, 18 CLD, and 106 LC/PASC 
patients defined by the same criteria as the test set patients and according to the methods above for LC/PASC 
and CLD4,13. The independent datasets comprise a group of individuals with age, gender, and predominant 
symptoms as summarized in Table 2.

Table 1.   The number of individuals for each disease state (class) in the full dataset, the training and evaluation 
partitions.

Data partition | Label Not Perturbed PASC CLD

Full dataset 67 103 53

80% training 54 82 42

20% evaluation 13 21 11

Table 2.   Demographics and Clinical Characteristics of LC/PASC and CLD Cohorts.

Characteristic

LC/PASC CLD

n = 106 n = 18

Age-year

 Median 45 41

 Range 25–70 19–78

Sex %

 Male 43 32

 Female 57 68

Symptoms %

Fatigue (100) Fatigue (93)

Brain Fog (98) Brain Fog (50)

PEM (83) PEM (43)

Headache (57) Headache (14)
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Ethics
All the patients/participants provided their written informed consent to participate in this study. The study was 
approved by the IRB for the Chronic COVID Treatment Center.

Results
Cytokine parameters reveal no difference between healthy controls and mild‑moderate acute 
COVID individuals, supporting aggregation into the not perturbed disease state
To determine the immunologic distinctions between healthy individuals (Control) and those with mild to mod-
erate acute COVID-19 (MM), we evaluated the 14 cytokines, the LHI, and SI with a Mann-Whitey U-test. The 
outcome of our analysis (Table 3) revealed that only VEGF showed a statistically significant trend (p = 0.09) 
between the HC and MM groups. The remaining 15 biomarkers, including the LHI and SI, did not have statisti-
cal differences.

To elucidate the broader immune landscape, we aggregated metrics from both groups. The resultant p-value 
of 0.1883 underscores the absence of a statistically significant difference between the many chronic inflamma-
tory biomarkers from healthy control (HC) and mild-moderate (MM) individuals. We aggregated the HC and 
MM based on this lack of statistically significant differences in these cytokines to demonstrate the diagnostic 
capability of the model in a population with ongoing acute COVID-19 cases.

Tree‑based models for diagnosis of PASC and differentiation from chronic lyme disease
To evaluate the predictive capability of the tree-based models (decision tree, random forest, and GBM), we used a 
hold-out partition from the dataset. This split was a stratified sample of 20% of the complete dataset. The resulting 
performance metrics were compared to those obtained from the training partition. This comparison allowed us 
to determine if the models presented overfitting. The similarity of metrics between the training set and hold-out 
set indicates that the model did not show overfitting and had proper predictive capabilities. Table 4 indicated 
that GBM had the overall best-weighted performance and the smallest training time. These two characteristics 
allowed us to select GBM as the best model for validation on a random sample.

To interpret the GBM model, we approximated its decision pathways using a surrogate decision model. This 
allowed us to visualize the more complex GBM into a simplified single-tree topology. Figure 1 represents the 
binary decision path used by the GBM to classify between Not Perturbed, LC/PASC, and CLD. The tree shows 

Table 3.   Statistical comparison between HC and MM using a Mann–Whitney U-test. For p-values greater 
than 0.05, ns represent a lack of statistically significant difference.

Biomarker Mean (HC) Median (HC) Std (HC) Mean (MM) Median (MM) Std (MM) U-test p-value Significance

TNF-α 9.29 8.41 4.97 7.15 6.02 3.73 0.05 ns

IL-4 7.29 3.58 10 2.55 1.56 2.31 0.19 ns

IL-13 3.69 2.15 5.11 2.41 1.02 4.01 0.15 ns

IL-2 8.64 9.47 3.84 10.24 9.54 2.26 0.15 ns

GM-CSF 36.83 10.96 61.42 53.85 10.08 100.8 0.25 ns

sCD40L 12,163.45 7966.35 14,245.54 11,121.09 7383.9 9720.52 0.57 ns

CCL5 11,776.36 11,105.19 5666.6 11,781.82 11,204.37 3387.49 0.28 ns

IL-6 3.15 2.51 2.53 9.42 2.28 21.59 0.22 ns

IL-10 1.41 1.06 0.97 1.17 0.96 0.65 0.17 ns

IFN-γ 3.37 1.41 4.13 1.02 0.73 0.93 0.1 ns

IL-8 14.12 9.64 19.47 10.84 9.97 5.65 0.61 ns

CCL4 12.86 10.55 7.14 14.44 10.84 11.59 0.43 ns

LHI 1.16 1.14 0.64 1.1 1.12 0.54 0.16 ns

SI 3.42 1.18 6.84 1.78 1.32 1.9 0.11 ns

Table 4.   Weighted LC diagnostic performance metrics (in percentages) on the training (80%) and hold-
out (20%) partitions for the three tree-based models: decision tree (DT), random forest (RF), and gradient 
boosting machine (GBM).

Train/Test Model Sensitivity Specificity F1 PPV NPV Accuracy Training/Tuning Time (seconds)

Train DT 97 99 0.97 98 97 97 0.06

Train RF 100 100 1 100 100 100 2.26

Train GBM 100 100 1 100 100 100 0.86

Test DT 84 94 0.84 84 94 84 Not measured

Test RF 89 95 0.89 89 95 89 Not measured

Test GBM 89 96 0.89 89 96 89 Not measured



5

Vol.:(0123456789)

Scientific Reports |        (2024) 14:19743  | https://doi.org/10.1038/s41598-024-70929-y

www.nature.com/scientificreports/

high levels of IL-2 lead to LC/PASC, whereas lower levels of the IL-2 are associated with chronic CLD and Not 
Perturbed individuals. We also determined that altered levels of VEGF are associated with chronic CLD similar 
to Antonara et al.18.

Validation of the LightGBM model on a random set
To corroborate the robustness of the GBM model, we evaluated its predictive capabilities on an independent 
and randomly selected dataset composed of 124 patients (18 CLD and 106 LC/PASC) presenting with fatigue. 
The result (Table 5) indicated a weighted Sensitivity of 99% and Specificity of 88% for the detection of LC/PASC, 
and weighted Sensitivity of 89%, and a Specificity of 99% for CLD. The GBM model demonstrated its ability to 
discern between diverse disease states with high-performance metrics. The use of an external dataset validates the 
results in the 20% holdout split and supports the potential deployment of this model as a clinical diagnostic. This 
classification algorithm demonstrates the ability to distinguish not perturbed (includes acute COVID) from LC/
PASC and CLD. The high positive (PPV) and negative predictive values (NPV) in Table 5 not only demonstrate 
the ability of the algorithm to show who does have CLD or LC/PSC (PPV) but also demonstrates the abilty to 
show who does not have either of these two chronic inflammatory conditions.

Development of the CLD index
To reduce the presence of misclassified instances (especially false negatives) and to confirm the GBM model 
if patients are not in the non-perturbed screening category, we developed a heuristic capable of further 
discriminating between LC and CLD. We used a domain expert-based approach to engineer a novel two-feature 
biomarker (Eqs. 3 and 4) known as CLD Index. The need for a two-dimensional feature space was due to the 
complexity of separating. Implementation of the CLD Index allowed for improved separation as they represented 

Fig. 1.   Surrogate tree visualization of the GBM classifier’s decision paths. Nodes branching left are indicative of 
less than or equal ( ≤) values, while nodes branching right represent greater than ( >) values.

Table 5.   Performance metrics of the GBM model on a random set of patients to validate deployment 
potential.

Class|Metric Sensitivity (%) Specificity (%) PPV (%) NPV (%) F1 Accuracy

PASC 99.06 88.89 98.13 94.12 0.986

CLD 88.89 99.06 94.12 98.13 0.914

Weighted 97.58 90.36 97.55 94.70 0.950 94%
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the biological relationships of cytokines and disease states, with CLD-elevated cytokines (TNF-alpha and IL-4) 
in the numerator and PASC-elevated cytokines (IFN-gamma, IL-2 and CCL3) in the denominator.

The discriminating power of features 1 and 2 was evaluated using a decision tree and a holdout partition of 
20%. Further evaluation was done on a a 25-CLD patient dataset. The results indicated a high discriminating 
power, with 100% sensitivity and specificity when evaluating the holdout set (Table 6). This effectiveness was 
confirmed when testing features 1 (TNF-alpha + IL-4)/(IFN-gamma + IL-2) and 2 (TNF-alpha * IL-4)/(IFN-
gamma + IL-2 + CCL3) on the 25-CLD dataset, where sensitivity, accuracy, and PPV were 100%. The power of the 
CLD Index can be attributed to engineering a set of features where relevant CLD cytokines are in the numerator 
and relevant LC/PASC cytokines are in the dominant. This leads to higher CLD Index values for CLD patients 
and lower values for PASC individuals.

Discussion
Acute COVID causes a constellation of immunologic abnormalities characterized as a “Cytokine Storm”. Fre-
quently lost in this pathology is significant immunosuppression due to low T-cell count, especially CD8 + T-cells, 
immune exhaustion, and decreased expression of Granzyme A19–22. Immunosuppression can lead to the reac-
tivation of chronic herpes family viruses such as Epstein-Barr virus (EBV), cytomegalovirus (CMV), Human 
Herpesvirus-6 (HHV-6), and Herpes Simplex (HSV) among others. In addition, undiagnosed or inadequately 
treated tick-borne illnesses such as CLD may also recrudesce because of a diminution of immune control. Diag-
nosis and differentiation of all of these “sequelae” of acute COVID are difficult when SARS-CoV-2 itself can 
produce a post-infectious condition (LC/PASC) and the symptoms significantly overlap.

Cytokine profiling provides valuable information for the understanding of the complex immunological inter-
actions regulating the mechanisms and outcomes of different pathologies. Combining the obtained data with 
machine learning approaches has been successfully used for the prediction of severity, chronicity, and mortality 
rate of diseases such as COVID-192,23. Translation of these integrated analyses into diagnostic tools represents 
a promising strategy to facilitate the differential diagnosis of pathologies with unspecific and similar clinical 
manifestations driven by distinct immunopathological mechanisms.

Immune-mediated inflammatory diseases such as LC/PASC and CLD share a common spectrum of symp-
toms including pain, fatigue, depression, and cognitive deficits2,24. Therefore, it is important to identify specific 
immunological features among these diseases to improve the current diagnostic tools available and provide 
adequate treatment to the patients.

To address the need for accurate diagnosis for proper treatment, we developed the Lyme Index, a diagnostic 
score, to improve the stratification of LC/PASC and CLD patients. The Lyme Index uses two engineered features, 
derived from biologically relevant cytokines, where CLD cytokines are in the numerator and LC/PASC cytokines 
are in the denominator creating a ratio where higher scores were associated with CLD, the lower scores were LC/
PASC. As we previously described, LC/PASC patients are characterized by increased levels of IFN-γ and IL-2, 
which in the context of a viral infection would induce the activation of effector T cells with pro-inflammatory 
properties. However, the chemotactic milieu in these patients, characterized by lower CCL4 and higher CCL3, 
induces the attraction mainly of myeloid cells promoting the inflammatory response associated with the long-
lasting symptoms observed in LC/PASC. Additionally, increased IFN-γ promotes myeloid cell activation that, as 
we have previously characterized, is associated with the increased frequency of inflammatory CD14 + , CD16 + , 
and CCR5 + monocytes in the PASC group compared to healthy donors2,25, supporting lymphopenia and virus 
persistence. Our diagnostic index integrates the increased levels of IFN-γ, IL-2, and CCL3 in LC/PASC patients 
to separate them from clinically similar chronic CLD patients.

In the case of CLD patients, we observed an increased concentration of TNF-α and IL-4 and included 
these parameters in our index to further stratify these patients. Augmented levels of these cytokines were 
previously reported  in the cerebrospinal fluid of patients with neuroborreliosis  compared with control 

(3)Lyme Index Feature 1 =
(TNF − alpha+ IL− 4)

(IFN − gamma+ IL− 2)

(4)Lyme Index Feature 2 =
(TNF − alpha ∗ IL− 4)

(IFN − gamma+ IL− 2+ CCL3)

Table 6.   Performance metrics for the CLD Index (features 1 and 2) on the evaluation partition and the 
25-CLD dataset.

Metric|Features (TNF-alpha + IL-4)/(IFN-gamma + IL-2) and (TNF-alpha * IL-4)/(IFN-gamma + IL-2 + CCL3) (%)

Sensitivity 80/20 evaluation split 100

Specificity 80/20 evaluation split 100

Precision 25-CLD 100

Recall 25-CLD 100

Accuracy 25-CLD 100

F1-Score 25-CLD 100
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subjects 26. Additionally, in a different study, an increase in IL-4 concentration in cerebrospinal fluid of patients 
with neuroborreliosis was observed during the first months after the onset of neurological symptoms, followed 
by an increased IL-4 in blood at later time points27, indicating that higher blood levels of IL-4 reflect an 
immunological alteration initiated in the central nervous system. As mentioned above, CLD patients are affected 
with persistent symptoms such as musculoskeletal pain, fatigue, and neurocognitive difficulties24. The mechanisms 
underlying the pathogenesis of the CLD syndrome are still not fully elucidated. Current evidence supports the 
hypothesis of an association with autoimmune events resulting in a dysregulated pro-inflammatory reaction, as 
well as, a chronic inflammation caused due to a slow clearance of the bacterial peptidoglycan5,28. Considering 
the type of symptoms observed in CLD that share the common features of exacerbated central nervous system 
pain and sensory-processing mechanisms, CLD is included within the group of pathologies associated with 
central sensitivity syndrome (CSS)24. Pro-inflammatory cytokines such as TNF-α promote CSS inducing central 
sensitization and hyperalgesia via distinct and overlapping synaptic mechanisms in neurons  either  by 
increasing excitatory synaptic transmission or by decreasing inhibitory synaptic transmission29. Furthermore, 
TNF-α promotes CSS-associated neuroinflammation generating several adverse effects, such as chronic pain, 
neurodegeneration, and cognitive impairment30, common features of CLD. Additionally, immune cells promote 
peripheral or central nervous system sensitization through pro-inflammatory molecules such as TNF-α. Mast 
cells and astrocytes release TNF-α affecting neuronal function and promoting the development of chronic 
pain30,31. The effects of chronic inflammation and TNF-α, in particular, have been shown to lower levels of 
serotonin leading to depression32. Interestingly, a recent paper has suggested that low serotonin in LC could be 
alleviated by the use of Prozac™33. One can also speculate that effective treatment of chronic inflammation in LC 
and CLD might also be effective in addressing depression in these conditions.

Interestingly, CLD patients show elevated levels of IL-4, a cytokine associated with type 2 responses. Exac-
erbation of type 2 inflammation could be detrimental in different organs including the central nervous system. 
In an experimental model of neuromyelitis optica, a strong type 2 response in the central nervous system is 
observed promoting tissue damage in this pathology34. However, there is no direct association between type 
2 responses and CLD or CSS. Considering the above-mentioned effects of pro-inflammatory cytokines such 
as TNF-α, the increased IL-4 production might be related to a compensatory mechanism to ameliorate the 
immune-mediated effects observed in CLD. Pro-inflammatory cytokines associated with neuroinflammation 
can feedback control their expression and regulate the production of other mediators like IL-435. Further, TNF-α 
signaling induces the expression of GATA-336, which is the transcription factor associated with Th2 polariza-
tion and IL-4 production, indicating that TNF-α is responsible not only for the inflammatory effects promoting 
CSS and the symptoms associated with chronic CLD disease but also for the observed increase in IL-4 produc-
tion as a compensatory mechanism. IL-4 polarized M2 macrophages induce a sustained production of opioid 
peptides ameliorating pain and promoting pain resolution37. Additionally, T cells in the meninges secrete IL-4 
to trigger the production of brain-derived neurotrophic factors to support neurogenesis in response to inflam-
matory-associated damage38. Thus, the high levels of TNF-α and IL-4 detected in CLD are closely associated 
with the clinical manifestations of this disease, with the induction of the immune-mediated damage, and with 
a failed compensatory response.

Even though increased TNF-α and IL-4 are very characteristic of CLD, a study comparing neuroborreliosis 
patients with control subjects showed a significant difference in the concentration of these cytokines. However, 
there was no difference in neuroborreliosis patients compared with tick-borne encephalitis or multiple sclerosis 
patients26. These data highlight the importance of considering the LC/PASC-associated cytokines in our index 
to generate a more solid platform for patient stratification.

Targeting individual cytokines underlying the immunopathogenesis of these conditions may provide a pow-
erful new tool in the treatment of these immunologically mediated disorders using precision medicine. Further 
study may elucidate how pathogen or antigen persistence or reactivation could contribute to these classifications.

Data availability
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