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Abstract: 
Background: Bladder cancer is rare in young women, and advanced presentations are exceptionally uncommon. We 
report a de-identified case of a previously healthy 31-year-old female who developed rapidly progressive stage IV 
bladder cancer within 12 months of completing a three-dose Moderna mRNA vaccination series (May 2021, June 
2021, December 2021).  
Case Findings: Comprehensive multi-omic profiling was performed using PBIMA (Molecular Surveillance and Indi-
vidualized Targeted Immunotherapy Peptide Editing) and REViSS (Spike-associated Transcriptional/Translational 
Instability Surveillance), incorporating analyses of plasma-derived circulating tumor DNA, whole-blood RNA, and 
urine exosome proteomics. Dysregulated gene expressions were identified across oncogenic driver genes (KRAS, 
ATM, MAPK1, NRAS, CHD4, PIK3CA, and SF3B1), auxiliary tumor-promoting signals (TOP1, PSIP1, and ERBB2), 
and broad evidence of genome instability with impaired DNA repair (ATM, MSH2). Within circulating tumor DNA, 
a host–vector chimeric read mapped to chr19:55,482,637–55,482,674 (GRCh38), in cytoband 19q13.42, positioned ~367 
kb downstream of the canonical AAVS1 safe harbor and ~158 kb upstream of ZNF580 at the proximal edge of the 
zinc-finger (ZNF) gene cluster. This sequence aligned with perfect 20/20 bp identity to a segment (bases 5905–5924) 
within the Spike open reading frame (ORF) coding region (bases 3674–7480) of the Pfizer BNT162b2 DNA plasmid 
reference (GenBank accession OR134577.1), despite the patient only receiving Moderna vaccinations. This apparent 
paradox is best explained by shared Spike ORF sequences within the expression cassette across both vaccine plat-
forms; because Moderna’s proprietary plasmid sequence has not been deposited in NCBI, BLAST defaults to Pfizer’s 
published reference as the nearest available match. The integration site was located outside the canonical AAVS1 
“safe harbor” and within a gene-dense, recombination-prone regulatory region, raising concern for transcriptional 
disruption, fusion transcript formation, and oncogenic potential. The probability of a random 20-base sequence per-
fectly matching a predefined target is approximately 1 in a trillion, making this alignment statistically compelling 
and highly unlikely to be an incidental artifact. 
Conclusions: This sentinel case report provides the first documented evidence of genomic integration of mRNA vac-
cine-derived genetic material in a human subject, documenting a temporal association between COVID-19 mRNA 
vaccination and aggressive malignancy, reproducible multi-omic evidence of oncogenic signaling, and a non–safe 
harbor host–vector integration event. While causality cannot be established from a single case, the convergence of (i) 
close temporal proximity to vaccination, (ii) genomic integration of a vaccine plasmid–derived spike gene fragment, 
and (iii) consistent transcriptomic and proteomic instability across biospecimens represents a highly unusual and 
biologically plausible pattern. These findings highlight an urgent need for systematic genomic surveillance, orthogo-
nal validation with long-read sequencing, and larger cohort studies to rigorously define the impact of synthetic 
mRNA vaccine platforms on genome integrity and cancer risk. 

https://www.ncbi.nlm.nih.gov/nuccore/OR134577.1


 

 

1. Introduction 

Bladder cancer is predominantly a disease of older adults, and its occurrence in young women is exceptionally un-
common[1-8]. When advanced disease is present in this demographic, it is typically aggressive and carries an unfa-
vorable prognosis[9-17]. Such atypical presentations demand close examination of potential molecular drivers and 
external contributors[18-25]. 

 
Synthetic mRNA vaccines introduce heavily modified RNA molecules and lipid nanoparticle carriers that differ fun-
damentally from endogenous cellular transcripts. Residual plasmid DNA, stabilizing nucleotide analogs, and poten-
tial for reverse transcription raise concerns about genomic disruption, transcriptional dysregulation, and oncogenic 
activation[26-29]. Reports of plasmid DNA contamination, enhancer sequences, and persistence of spike protein ex-
pression have intensified scrutiny regarding the role of mRNA vaccines in genomic instability and malignant trans-
formation[30,31]. 
 
We describe a 31-year-old previously healthy woman who developed rapidly progressive stage IV bladder cancer 
within 12 months of completing a three-dose Moderna mRNA vaccination series (May 2021, June 2021, December 
2021). Given the rarity of advanced bladder cancer in this demographic, her case warranted in-depth molecular in-
vestigation. Multi-omic profiling identified reproducible oncogenic driver activation, DNA repair impairment, tran-
scriptomic instability, and evidence of a vaccine-derived sequence integrated outside a genomic safe harbor[26,32]. 
This case illustrates a potential association between synthetic mRNA vaccination and the development of aggressive 
malignancy, underscoring the urgent need for systematic genomic surveillance and independent investigation of the 
long-term oncogenic risks associated with mRNA vaccine platforms. 

2. Case Presentation 
A previously healthy 31-year-old female received three Moderna mRNA vaccinations (May 2021, June 2021, Decem-
ber 2021) and, within 12 months, was diagnosed with rapidly progressive stage IV bladder cancer—an unusual and 
aggressive presentation for this age. The patient underwent comprehensive multi-omic profiling using PBIMA (Mo-
lecular Surveillance and Individualized Targeted Immunotherapy Peptide Editing) and REViSS (Spike-associated 
Transcriptional/Translational Instability Surveillance). Analyses incorporated circulating tumor DNA sequencing 
from plasma, whole-blood RNA transcriptomics, and urine exosome proteomics, enabling a multidimensional evalu-
ation of genomic and transcriptional dysregulation. 
 
Multi-omic analyses revealed dysregulated oncogenic drivers (KRAS, ATM, MAPK1, NRAS, CHD4, PIK3CA, SF3B1) 
and auxiliary tumor-promoting pathways (TOP1, PSIP1, ERBB2) across circulating tumor DNA, blood RNA, and 
urine exosome proteomics[11,33-36]. DNA repair deficiencies (ATM, MSH2) were also identified, consistent with 
enhanced susceptibility to genomic instability. The specific oncogenic drivers, auxiliary promoters, and DNA repair 
deficiencies identified through PBIMA multi-omic profiling are summarized in Table 1, highlighting their biospeci-
men presence and functional consequences. 
 
 
 
 
 
 



 

 

Gene Target Classification Biospecimen Presence Functional Implications 
KRAS Oncogenic Driver ctDNA, blood RNA, 

urine 
Constitutive RAS–RAF–MEK–ERK activation → un-
controlled proliferation, therapy resistance 

ATM Oncogenic Driver 
& DNA Repair 

ctDNA, blood RNA, 
urine 

Impaired DNA double-strand break recognition and 
checkpoint control → genomic instability 

MAPK1 Oncogenic Driver ctDNA, blood RNA, 
urine 

MAPK effector hyperactivation → invasion, survival 
signaling 

NRAS Oncogenic Driver ctDNA, blood RNA, 
urine 

MAPK/PI3K signaling amplification → RAF1 depend-
ence, malignant transformation 

SF3B1 Oncogenic Driver ctDNA, blood RNA Spliceosome disruption → aberrant splicing, tran-
scriptomic remodeling 

CHD4 Oncogenic Driver ctDNA, blood RNA, 
urine 

NuRD chromatin remodeling dysfunction → im-
paired DNA repair, angiogenesis, immune evasion 

PIK3CA Oncogenic Driver ctDNA, blood RNA PI3K–AKT pathway activation → metabolic rewiring, 
angiogenesis, immune suppression 

TOP1 Auxiliary Promoter ctDNA, blood RNA, 
urine (variable) 

DNA topology dysregulation → replicative stress, 
transcriptional collapse 

PSIP1 Auxiliary Promoter ctDNA, blood RNA, 
urine (variable) 

Chromatin co-activator upregulation → immune sup-
pression, angiogenesis 

ERBB2 (HER2) Auxiliary Promoter ctDNA, blood RNA, 
urine 

Receptor tyrosine kinase amplification → proliferative 
signaling, invasion, epigenetic reprogramming 

MSH2 DNA Repair Gene ctDNA, blood RNA Mismatch repair deficiency → microsatellite instabil-
ity, mutational burden 

Table 1. Dysregulated Oncogenic Drivers and Auxiliary Tumor-Promoting Pathways Identified by PBIMA Multi-Omic Profiling 

 
A particularly striking finding was the detection of a host–vector chimeric read mapping to chr19:55,482,637–
55,482,674 (GRCh38), within cytogenetic band 19q13.42, located ~367 kb downstream of the canonical AAVS1 safe 
harbor locus and ~158 kb upstream of ZNF580 at the proximal edge of the zinc-finger (ZNF) gene cluster[37–39]. 
This sequence aligned with 100% identity to a segment (bases 5905 – 5924) within the Spike Open Reading Frame 
(ORF) coding region (bases 3674 – 7480) of the Pfizer BNT162b2 DNA plasmid reference (GenBank accession 
OR134577.1), despite the patient only receiving Moderna vaccinations. The probability of a random 20-base sequence 
perfectly matching a predefined target is approximately 1 in a trillion, making this alignment statistically compelling 
and highly unlikely to be an incidental artifact. The integration site was located outside the canonical AAVS1 “safe 
harbor” and within a gene-dense, recombination-prone regulatory region, raising concern for transcriptional disrup-
tion, fusion transcript formation, and oncogenic potential[40,41]. 
 
Notably, the integrated fragment corresponded to a 20-nucleotide segment within the Spike ORF coding region of 
the engineered expression cassette. The apparent paradox is explained by (i) conservation of the Spike ORF across 
vaccine platforms and (ii) the absence of a deposited Moderna plasmid reference, which defaults BLAST alignment 
to Pfizer’s published sequence. Thus, the event represents a vaccine-derived Spike cassette fragment integrated into 
chr19q13.42, at the proximal edge of the ZNF cluster, with plausible regulatory impact. Supporting evidence is sum-
marized in Table 2, which documents the mapping parameters, alignment identity, genomic context, and functional 
implications of this integration event.  

https://www.ncbi.nlm.nih.gov/nuccore/OR134577.1


 

 

 

Parameter Result 

Sample Description Aggressive bladder cancer (post–mRNA vaccination) 
Vaccination History Moderna (3 doses: May 2021, June 2021, December 2021) 
Host Mapping Human chromosome 19, positions 55,482,637 – 55,482,674 (GRCh38), cytoband 19q13.42 
Viral Reference OR134577.1 (Pfizer BNT162b2 expression vector) 
Viral Alignment Range Bases 5905 – 5924 (Spike ORF coding region of the engineered expression cassette) 
Alignment Identity 20/20 bp (100%) 
Overlap Type Chimeric, “gap” alignment 
Orientation Host: forward (+); Viral: plus, orientation 
Mapping Quality (MQ) Host: 60 (high confidence), Viral: 6 (low confidence) 
Edit Distance Host: 4; Viral: 2; Total: 43 
Integration Classification Possible Host Translocation: TRUE; Vector Rearrangement: FALSE 
Genomic Context Located at 19q13.42, ~367 kb downstream of the AAVS1 safe harbor (chr19:55.09–55.12 

Mb) and ~158 kb upstream of ZNF580. 
Functional Relevance Gene-dense, recombination-prone, transcriptionally active regulatory region; potential 

for transcriptional disruption, fusion transcripts, and genomic instability 

Table 2. DNA Frag analysis of host–vector translocation in a Moderna-vaccinated patient, showing a chimeric read at 

chr19:55,482,637–55,482,674 (GRCh38), cytoband 19q13.42, with 100% alignment to a segment of the Pfizer BNT162b2 plasmid 

reference (OR134577.1). The integration site lies ~367 kb downstream of the canonical AAVS1 safe harbor and ~158 kb upstream 

of ZNF580, placing it within a gene-dense, transcriptionally active, recombination-prone region and raising concern for transcrip-

tional disruption, fusion transcript generation, and genomic instability. 

3. Discussion 
This case raises several mechanistic concerns regarding the potential role of synthetic mRNA vaccination in malig-
nant transformation. To our knowledge, it represents the first documented evidence of genomic integration of vac-
cine-derived genetic material in a human subject. Specifically, we identified a vaccine vector–derived sequence inte-
grated at chr19:55,482,637–55,482,674 (GRCh38), within cytoband 19q13.42, positioned ~367 kb downstream of the 
canonical AAVS1 “safe harbor” and ~158 kb upstream of ZNF580 at the proximal edge of the zinc-finger (ZNF) gene 
cluster, providing direct molecular evidence of host–vector genomic interaction [42–44]. The integration site lies 
within a gene-dense, transcriptionally active, recombination-prone regulatory region, a context associated with in-
creased risk of transcriptional disruption, fusion transcript formation, and genomic instability [45]. 

Second, the paradoxical alignment of the integrated sequence to the Pfizer BNT162b2 plasmid, despite the patient 
having received only Moderna vaccinations, highlights the issue of cross-platform plasmid homology and manufac-
turing commonalities. The 100% identity to Pfizer’s deposited vector sequence suggests the presence of shared plas-
mid backbone elements or spike-encoding motifs across vaccine platforms. Given the absence of a deposited 
Moderna plasmid reference, BLAST alignment defaulted to Pfizer’s sequence as the nearest available match, further 
underscoring the need for independent disclosure and validation of proprietary vaccine constructs. 

Third, several plausible mechanisms could underlie the observed integration event [26,46,47]. These include (i) per-
sistence and carry-over of residual plasmid DNA fragments from the in vitro transcription template, (ii) reverse 
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transcription of spike mRNA followed by insertion at double-strand DNA breaks, (iii) misrepair via non-homolo-
gous end joining (NHEJ) or microhomology-mediated end joining (MMEJ), (iv) homologous recombination when 
stretches of sequence similarity exist, (v) LINE-1 retrotransposon activity generating cDNA intermediates, and (vi) 
topoisomerase-mediated mis-ligation during DNA unwinding. Each of these routes is biologically feasible and con-
sistent with the concurrent detection of DNA repair deficiencies (ATM, MSH2) in this patient, which would increase 
susceptibility to insertional mutagenesis. Such vulnerabilities may accelerate oncogenic transformation and malig-
nant progression. Supporting this concern, Speicher et al. quantified billions of residual plasmid DNA fragments per 
vaccine dose, with levels in both bivalent and XBB.1.5 Pfizer-BioNTech and Moderna COVID-19 vaccine products 
exceeding regulatory safety thresholds by 36–627-fold, thereby providing a plausible source of template DNA for 
persistent chromosomal integration [28]. 

In addition to the host–vector integration event, the patient’s multi-omic profile revealed a constellation of dysregu-
lated oncogenic drivers and auxiliary tumor-promoting signals that together create a permissive landscape for ag-
gressive malignancy[29,48,49]. Activating alterations in KRAS and NRAS converge on the MAPK signaling cascade, 
sustaining proliferative signaling and bypassing normal growth controls[9,50,51]. Concurrent dysregulation of 
MAPK1 amplifies downstream ERK-driven transcriptional programs that promote cell cycle progression and sur-
vival[1-3,35,52,53]. The chromatin remodeler CHD4 and the RNA splicing factor SF3B1 contribute to epigenetic re-
programming and aberrant transcript processing, fostering cellular plasticity and tumor adaptability[4,54-59]. 
PIK3CA activation drives PI3K/AKT signaling, enhancing metabolic fitness, invasion, and resistance to apoptosis, 
while auxiliary signals from TOP1, PSIP1, and ERBB2 further reinforce replication stress tolerance, transcriptional 
activation, and growth factor responsiveness[7,10,12,17,60,61]. Importantly, deficiencies in ATM and MSH2 compro-
mise DNA repair fidelity, predisposing to genomic instability, accumulation of mutations, and chromosomal rear-
rangements[17,22,25,62]. Together, this pattern of multi-pathway dysregulation provides a mechanistic basis for the 
patient’s unusually rapid disease evolution, linking vaccine-associated genomic perturbations with a molecular envi-
ronment primed for malignant transformation. 

Emerging evidence supports a link between mRNA vaccination and oncogenesis [63, 64]. A population-wide 30-
month cohort study of nearly 300,000 residents of Pescara, Italy, found that receipt of ≥1 COVID-19 vaccine dose was 
associated with a 23% increased risk of cancer hospitalization overall (HR 1.23, 95% CI 1.11–1.37), with the strongest 
and statistically significant excess risks observed for breast cancer (HR 1.54), bladder cancer (HR 1.62), and colorectal 
cancer (HR 1.35) [61]. Complementing this epidemiologic evidence, Marik et al. formally defined the syndrome of 
COVID-19 mRNA vaccine-induced “turbo cancers,” compiling clinical case reports, epidemiologic signals, and 
mechanistic pathways through which the spike protein may accelerate malignant transformation via metabolic re-
programming, apoptosis resistance, angiogenesis, and immune dysregulation [62]. Taken together, these reports 
provide convergent epidemiologic and mechanistic support for our present case, in which genomic integration and 
molecular dysregulation were directly documented. 

Together, these observations support a biologically plausible framework in which synthetic mRNA vaccine exposure 
contributes to genomic instability, oncogenic signaling, and aggressive disease evolution. While causality cannot be 
inferred from a single case, the convergence of temporal proximity, vector sequence integration, and reproducible 
multi-omic dysregulation provides a strong hypothesis-generating signal. This warrants urgent systematic genomic 
surveillance, orthogonal validation with long-read sequencing, and independent investigation of the long-term onco-
genic risks associated with mRNA vaccine technologies. A schematic overview of the clinical course, host–vector 
integration, and multi-omic dysregulation is shown in Figure 1. 



 

 

 

Figure 1. Genomic Integration and Molecular Dysregulation in Aggressive Bladder Cancer After mRNA Vaccination *Created with 

Biorender.com 

4. Conclusions 
This sentinel case report describes the rapid onset of aggressive stage IV bladder cancer in a young woman after a 

Moderna mRNA vaccination series, marked by direct evidence of genomic integration of vaccine-derived genetic 

material. Multi-omic profiling revealed reproducible oncogenic driver activation, DNA repair deficiencies, tran-

scriptomic instability, and integration of a vaccine vector–derived sequence outside a genomic safe har-

bor[8,30,31,33,38,39,41,58,65]. While causality cannot be established from a single case, the convergence of temporal 

proximity, integration evidence, and multi-system molecular disruption raises serious concern regarding the onco-

genic potential of synthetic mRNA vaccine platforms. These findings highlight the urgent need for systematic ge-

nomic surveillance, independent validation using orthogonal sequencing methods, and rigorous investigation into 

the long-term genomic and oncologic risks of mRNA vaccination. 
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